A first study of fuzzy cognitive maps learning using particle swarm optimization

We introduce a new algorithm for fuzzy cognitive maps learning. The proposed approach is based on the particle swarm optimization method and it is used for the detection of proper weight matrices that lead the fuzzy cognitive map to desired steady states. For this purpose a properly defined objective function that incorporates experts' knowledge is constructed and minimized. The application of the proposed methodology to an industrial control problem supports the claim that the proposed technique is efficient and robust.

[1]  D. Agrafiotis,et al.  Feature selection for structure-activity correlation using binary particle swarms. , 2002, Journal of medicinal chemistry.

[2]  Masafumi Hagiwara Extended Fuzzy Cognitive Maps , 1994 .

[3]  Chrysostomos D. Stylios,et al.  ACTIVATION HEBBIAN LEARNING RULE FOR FUZZY COGNITIVE MAPS , 2002 .

[4]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[5]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[6]  Tamás D. Gedeon,et al.  A Methodology for Developing Adaptive Fuzzy Cognitive Maps for Decision Support , 2000, J. Adv. Comput. Intell. Intell. Informatics.

[7]  Hazim El-Mounayri,et al.  NC end milling optimiza-tion using evolutionary computation , 2002 .

[8]  M. N. Vrahatis,et al.  Particle Identification by Light Scattering through Evolutionary Algorithms , 2002 .

[9]  Chrysostomos D. Stylios,et al.  Modelling supervisory control systems using fuzzy cognitive maps , 2000 .

[10]  W Z Lu,et al.  Analysis of Pollutant Levels in Central Hong Kong Applying Neural Network Method with Particle Swarm Optimization , 2002, Environmental monitoring and assessment.

[11]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[12]  Bart Kosko,et al.  Virtual Worlds as Fuzzy Cognitive Maps , 1994, Presence: Teleoperators & Virtual Environments.

[13]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[14]  Bart Kosko,et al.  Neural networks and fuzzy systems , 1998 .

[15]  Michael D. Coovert,et al.  Modeling dynamic social and psychological processes with fuzzy cognitive maps , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[16]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[17]  A. Cockshott,et al.  Improving the fermentation medium for Echinocandin B production part II: Particle swarm optimization , 2001 .

[18]  Konstantinos E. Parsopoulos,et al.  Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method , 2002 .

[19]  Marco Dorigo,et al.  From Natural to Artificial Swarm Intelligence , 1999 .

[20]  José Aguilar,et al.  Adaptive Random Fuzzy Cognitive Maps , 2002, IBERAMIA.

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  Earl Cox,et al.  The fuzzy systems handbook , 1994 .

[24]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[25]  Michael N. Vrahatis,et al.  Particle swarm optimization for integer programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[26]  D. E. Koulouriotis,et al.  Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[27]  Chrysostomos D. Stylios,et al.  Decision making in external beam radiation therapy based on fuzzy cognitive maps , 2002, Proceedings First International IEEE Symposium Intelligent Systems.

[28]  Rod Taber,et al.  Knowledge processing with Fuzzy Cognitive Maps , 1991 .

[29]  Chrysostomos D. Stylios,et al.  The challenge of modelling supervisory systems using fuzzy cognitive maps , 1998, J. Intell. Manuf..

[30]  Michael N. Vrahatis,et al.  Computing periodic orbits of nondifferentiable/discontinuous mappings through particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[31]  Michael N. Vrahatis,et al.  Particle Swarm Optimization Method for Constrained Optimization Problems , 2002 .

[32]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[33]  Chrysostomos D. Stylios,et al.  Fuzzy cognitive maps: a model for intelligent supervisory control systems , 1999 .

[34]  Chrysostomos D. Stylios,et al.  An integrated two-level hierarchical system for decision making in radiation therapy based on fuzzy cognitive maps , 2003, IEEE Transactions on Biomedical Engineering.

[35]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[36]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[37]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[38]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[39]  Chrysostomos D. Stylios,et al.  Fuzzy Cognitive Maps in modeling supervisory control systems , 2000, J. Intell. Fuzzy Syst..

[40]  Imtiaz Ahmad,et al.  Particle swarm optimization for task assignment problem , 2002, Microprocess. Microsystems.

[41]  E. Biscaia,et al.  The use of particle swarm optimization for dynamical analysis in chemical processes , 2002 .

[42]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[43]  Michael N. Vrahatis,et al.  Particle swarm optimization for minimax problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).