Bisimulations on Data Graphs

Bisimulation provides structural conditions to characterize indistinguishability between nodes on graph-like structures from an external observer. It is a fundamental notion used in many areas. However, many applications use graphs where nodes have data, and where observers can test for equality or inequality of data values (e.g., asking the attribute 'name' of a node to be different from that of all its neighbors). The present work constitutes a first investigation of "data aware" bisimulations on data graphs. We study the problem of computing such bisimulations, based on the observational indistinguishability for XPath —a language that extends modal logic with tests for data equality. We show that in general the problem is PSPACE-complete, but identify several restrictions that yield better complexity bounds (CO-NP, PTIME) by controlling suitable parameters of the problem; namely, the amount of non-locality allowed, and the class of models considered (graph, DAG, tree). In particular, this analysis yields a hierarchy of tractable fragments.

[1]  Domagoj Vrgoc,et al.  Querying Graphs with Data , 2016, J. ACM.

[2]  Stéphane Demri,et al.  LTL with the Freeze Quantifier and Register Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[3]  Dexter Kozen,et al.  Lower bounds for natural proof systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[4]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[5]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[6]  Santiago Figueira,et al.  Using Logic in the Generation of Referring Expressions , 2011, LACL.

[7]  Jan Hidders,et al.  External memory K-bisimulation reduction of big graphs , 2012, CIKM.

[8]  Emiel Krahmer,et al.  Graph-Based Generation of Referring Expressions , 2003, CL.

[9]  Robin Milner,et al.  An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.

[10]  Emiel Krahmer,et al.  Computational Generation of Referring Expressions: A Survey , 2012, CL.

[11]  Marcin Jurdzinski,et al.  Alternation-free modal mu-calculus for data trees , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[12]  Diego Figueira,et al.  Reasoning on words and trees with data , 2010 .

[13]  Santiago Figueira,et al.  Model theory of XPath on data trees. Part II: Binary bisimulation and definability , 2017, Inf. Comput..

[14]  José L. Balcázar,et al.  Deciding Bisimilarity is P-Complete , 1992, Formal Aspects Comput..

[15]  Claire David,et al.  Containment of pattern-based queries over data trees , 2013, ICDT '13.

[16]  Diego Figueira,et al.  On XPath with transitive axes and data tests , 2013, PODS.

[17]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[18]  Santiago Figueira,et al.  Definability for Downward and Vertical XPath on Data Trees , 2014, WoLLIC.

[19]  Diego Calvanese,et al.  Verification of relational data-centric dynamic systems with external services , 2012, PODS.

[20]  Jan Hidders,et al.  Regularities and dynamics in bisimulation reductions of big graphs , 2013, GRADES.

[21]  Orna Kupferman,et al.  Verification of Fair Transition Systems , 1998, Chic. J. Theor. Comput. Sci..

[22]  Diego Calvanese,et al.  Description Logic Knowledge and Action Bases , 2014, J. Artif. Intell. Res..

[23]  Leonid Libkin,et al.  Regular path queries on graphs with data , 2012, ICDT '12.

[24]  Jim Webber,et al.  Graph Databases: New Opportunities for Connected Data , 2013 .

[25]  Alexander Koller,et al.  Referring Expressions as Formulas of Description Logic , 2008, INLG.

[26]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[27]  Diego Calvanese,et al.  Containment of Conjunctive Regular Path Queries with Inverse , 2000, KR.

[28]  Anuj Dawar,et al.  Modal characterisation theorems over special classes of frames , 2009, Ann. Pure Appl. Log..

[29]  Xin Wang,et al.  Query preserving graph compression , 2012, SIGMOD Conference.

[30]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[31]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[32]  Davide Sangiorgi,et al.  On the origins of bisimulation and coinduction , 2009, TOPL.

[33]  Andrzej S. Murawski,et al.  Bisimilarity in Fresh-Register Automata , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[34]  J. Gabarró,et al.  Deciding bisimilarity isP-complete , 1992, Formal Aspects of Computing.

[35]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[36]  Santiago Figueira,et al.  On the Size of Shortest Modal Descriptions , 2010, Advances in Modal Logic.

[37]  Diego Figueira,et al.  Decidability of Downward XPath , 2012, TOCL.

[38]  Phokion G. Kolaitis,et al.  A Game-Theoretic Approach to Constraint Satisfaction , 2000, AAAI/IAAI.

[39]  Santiago Figueira,et al.  Logics of Repeating Values on Data Trees and Branching Counter Systems , 2017, FoSSaCS.

[40]  Stéphane Demri,et al.  Reasoning about Data Repetitions with Counter Systems , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[41]  Pablo Barceló,et al.  Querying graph databases , 2013, PODS '13.

[42]  Deepak D'Souza,et al.  A Decidable Temporal Logic of Repeating Values , 2007, LFCS.

[43]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[44]  M. de Rijke,et al.  Expressiveness of Concept Expressions in First-Order Description Logics , 1999, Artif. Intell..

[45]  Dan Suciu,et al.  Index Structures for Path Expressions , 1999, ICDT.

[46]  Thomas Schwentick,et al.  Temporal Logics on Words with Multiple Data Values , 2010, FSTTCS.

[47]  Stéphane Demri,et al.  On the freeze quantifier in constraint LTL: decidability and complexity , 2005, 12th International Symposium on Temporal Representation and Reasoning (TIME'05).

[48]  Santiago Figueira,et al.  Basic Model Theory of XPath on Data Trees , 2014, ICDT.

[49]  Alessio Lomuscio,et al.  Verification of Agent-Based Artifact Systems , 2013, J. Artif. Intell. Res..

[50]  Marcin Jurdzinski,et al.  Alternating automata on data trees and XPath satisfiability , 2008, TOCL.

[51]  Carsten Lutz,et al.  Description Logics with Concrete Domains-A Survey , 2002, Advances in Modal Logic.

[52]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[53]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[54]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[55]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[56]  Robert Givan,et al.  Equivalence notions and model minimization in Markov decision processes , 2003, Artif. Intell..

[57]  Santiago Figueira,et al.  Model Theory of XPath on Data Trees. Part I: Bisimulation and Characterization , 2015, J. Artif. Intell. Res..

[58]  Wim Martens,et al.  Querying graph databases with XPath , 2013, ICDT '13.