Thermophotovoltaic energy in space applications: Review and future potential

Abstract This article reviews the state of the art and historical development of thermophotovoltaic (TPV) energy conversion along with that of the main competing technologies, i.e. Stirling, Brayton, thermoelectrics, and thermionics, in the field of space power generation. Main advantages of TPV are the high efficiency, the absence of moving parts, and the fact that it directly generates DC power. The main drawbacks are the unproven reliability and the low rejection temperature, which makes necessary the use of relatively large radiators. This limits the usefulness of TPV to small/medium power applications (100 W e -class) that includes radioisotope (RTPV) and small solar thermal (STPV) generators. In this article, next generation TPV concepts are also revisited in order to explore their potential in future space power applications. Among them, multiband TPV cells are found to be the most promising in the short term because of their higher conversion efficiencies at lower emitter temperatures; thus significantly reducing the amount of rejected heat and the required radiator mass.

[1]  Graydon L. Yoder,et al.  TECHNOLOGY DEVELOPMENT PROGRAM FOR AN ADVANCED POTASSIUM RANKINE POWER CONVERSION SYSTEM COMPATIBLE WITH SEVERAL SPACE REACTOR DESIGNS , 2003 .

[2]  Stephen K Gray,et al.  Solar thermophotovoltaic system using nanostructures. , 2015, Optics express.

[3]  V. L. Teofilo,et al.  Thermophotovoltaic Energy Conversion for Space , 2008 .

[4]  Evelyn N. Wang,et al.  Enhanced photovoltaic energy conversion using thermally based spectral shaping , 2016, Nature Energy.

[5]  A. Bett,et al.  GaSb-, InGaAsSb-, InGaSb-, InAsSbP- and Ge-TPV cells with diffused emitters , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[6]  D. Jacqmin,et al.  Effect of Microgravity on Material Undergoing Melting and Freezing: the TES Experiment , 1995 .

[7]  P. Bermel,et al.  Solar thermophotovoltaics: reshaping the solar spectrum , 2016 .

[8]  Jeffrey G. Schreiber,et al.  A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications , 2007 .

[9]  V. Kumar,et al.  Modified design of radioisotope thermophotovoltaic generator to mitigate adverse effect of measured cell voltage , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[10]  Antonio Luque,et al.  Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion , 2016 .

[11]  Wayne A. Wong,et al.  An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA , 2005 .

[12]  S. Luryi,et al.  Quaternary InGaAsSb Thermophotovoltaic Diodes , 2006, IEEE Transactions on Electron Devices.

[13]  Ananthanarayanan Veeraragavan,et al.  Night time performance of a storage integrated solar thermophotovoltaic (SISTPV) system , 2014 .

[14]  A. Marshall,et al.  Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion , 2016, Journal of Electronic Materials.

[15]  Edward J. Gratrix,et al.  Thermophotovoltaic Spectral Control , 2004 .

[16]  V. L. Teofilo,et al.  Thermophotovoltaic Energy Conversion for Space Applications , 2006 .

[17]  Timothy J. Coutts,et al.  A review of progress in thermophotovoltaic generation of electricity fna fna I began writing this pa , 1999 .

[18]  Thomas Bauer,et al.  Thermophotovoltaics: Basic Principles and Critical Aspects of System Design , 2011 .

[19]  C. Algora,et al.  Global optimization of solar thermophotovoltaic systems , 2012 .

[20]  Jani Oksanen,et al.  Thermophotonic heat pump—a theoretical model and numerical simulations , 2010 .

[21]  David M. Bierman,et al.  A nanophotonic solar thermophotovoltaic device. , 2014, Nature nanotechnology.

[22]  M. Mauk,et al.  GaSb-related materials for TPV cells , 2003 .

[23]  A. Datas,et al.  Optimum semiconductor bandgaps in single junction and multijunction thermophotovoltaic converters , 2015 .

[24]  R. Paiella,et al.  Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion. , 2010, Optics express.

[25]  Zubin Jacob,et al.  Ideal near-field thermophotovoltaic cells , 2015, 1502.05019.

[26]  David M. Wilt,et al.  Thermophotovoltaics for Space Power Applications , 2007 .

[27]  Riccardo Messina,et al.  Graphene-based photovoltaic cells for near-field thermal energy conversion , 2012, Scientific Reports.

[28]  M. Green,et al.  Thermophotonics: a means for overcoming limitations of thermophotovoltaics? , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[29]  Bernhard Fleck,et al.  Solar Orbiter—mission profile, main goals and present status , 2005 .

[30]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[31]  Donald L. Chubb,et al.  Solar thermophotovoltaic (STPV) system with thermal energy storage , 2008 .

[32]  M. Pinar Mengüç,et al.  Thermal Impacts on the Performance of Nanoscale-Gap Thermophotovoltaic Power Generators , 2011, IEEE Transactions on Energy Conversion.

[33]  H. Toshiyoshi,et al.  Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer , 2015 .

[34]  Christopher J. Crowley,et al.  Thermophotovoltaic Converter Performance for Radioisotope Power Systems , 2005 .

[35]  P. Greiff,et al.  Micron-gap ThermoPhotoVoltaics (MTPV) , 2004 .

[36]  Donald L. Chubb,et al.  Theoretical Performance of a Radioisotope Thermophotovoltaic (RTPV) Power System , 2009 .

[37]  Ananthanarayanan Veeraragavan,et al.  Steady state analysis of a storage integrated solar thermophotovoltaic (SISTPV) system , 2013 .

[38]  Numerical power output predictions for low-bandgap thermophotovoltaic cells coupled with a latent-heat energy storage system , 2016 .

[39]  David B. Scharfe,et al.  Molten Boron Phase-Change Thermal Energy Storage to Augment Solar Thermal Propulsion Systems , 2011 .

[40]  Alexander L Efros,et al.  Suppression of auger processes in confined structures. , 2010, Nano letters.

[41]  Matthew R Gilpin High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites , 2015 .

[42]  Carlos Algora,et al.  Development and experimental evaluation of a complete solar thermophotovoltaic system , 2012 .

[43]  Andrew L. Presby,et al.  Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems , 2004 .

[44]  G. Miskolczy,et al.  Radioisotope Thermionic Converters for Space Applications , 1990, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference.

[45]  Matthew C Beard,et al.  The promise and challenge of nanostructured solar cells. , 2014, Nature nanotechnology.

[46]  A. Luque,et al.  Review of Experimental Results Related to the Operation of Intermediate Band Solar Cells , 2014, IEEE Journal of Photovoltaics.

[47]  Ivan Celanovic,et al.  Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems. , 2013, Optics express.

[48]  Carlos Algora,et al.  Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters , 2010 .

[49]  Christopher J. Crowley,et al.  Thermophotovoltaic Converter Design for Radioisotope Power Systems , 2004 .

[50]  P. Würfel,et al.  Theoretical limits of thermophotovoltaic solar energy conversion , 2003 .

[51]  Keunhan Park,et al.  Performance analysis of near-field thermophotovoltaic devices considering absorption distribution , 2008 .

[52]  Karen Young-Waithe Process design, development and fabrication of InAs homojunction converter cells for microscale thermophotovoltaic application , 2000 .

[53]  Richard T. Lahey,et al.  Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion , 2004 .

[54]  M. Wanlass,et al.  Monolithic Interconnected Modules (Mims) for Thermophotovoltaic Energy Conversion , 2013 .

[55]  Y. Okada,et al.  A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons , 2015, Nature Communications.

[56]  D. Rowe Thermoelectrics Handbook , 2005 .

[57]  F. A. Vicente,et al.  Thermophotovoltaic (TPV) applications to space power generation , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[58]  Yu-Bin Chen,et al.  Microscale radiation in thermophotovoltaic devices—A review , 2007 .

[59]  Prashant Nagpal,et al.  Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals , 2011 .

[60]  Martin A. Green,et al.  High external quantum efficiency from double heterostructure InGaP/GaAs layers as selective emitters for thermophotonic systems , 2004 .

[61]  W. P. Carroll,et al.  Review of recent advances of radioisotope power systems , 2008 .

[62]  K. W. Stone,et al.  On-Sun test results of McDonnell Douglas' prototype solar thermophotovoltaic power system , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[63]  Mark K. Goldstein,et al.  Superemissive light pipe for TPV applications , 1997 .

[64]  Nicholas A. Schifer,et al.  Overview of Stirling Technology Research at NASA Glenn Research Center , 2015 .

[65]  Nicholas P. Sergeant,et al.  Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification , 2013, Nature Communications.

[66]  D. Scharfe,et al.  Computational Evaluation of a Latent Heat Energy Storage System , 2013 .

[67]  S. D. Link,et al.  Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control , 2004, IEEE Transactions on Electron Devices.

[68]  Lee S. Mason,et al.  Realistic Specific Power Expectations for Advanced Radioisotope Power Systems , 2006 .

[69]  Jason E. Strauch,et al.  General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications , 2015 .

[70]  K. Hanamura,et al.  Nano‐gap TPV Generation of Electricity through Evanescent Wave in Near‐field Above Emitter Surface , 2007 .

[71]  Joseph N. Cannon,et al.  Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers , 1997 .

[72]  David B. Scharfe,et al.  Phase-Change Thermal Energy Storage and Conversion: Development and Analysis for Solar Thermal Propulsion , 2012 .

[73]  Robert L. Fuller Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report , 2010 .

[74]  Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators , 2013, Scientific reports.