Semi-supervised learning by search of optimal target vector

We introduce a semi-supervised learning estimator which tends to the first kernel principal component as the number of labeled points vanishes. We show application of the proposed method for dimensionality reduction and develop a semi-supervised regression and classification algorithm for transductive inference.

[1]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[2]  J. Lafferty,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[3]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[4]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[5]  S. Stramaglia,et al.  An Invariance Property of Predictors in Kernel-Induced Hypothesis Spaces , 2006 .

[6]  Jason Weston,et al.  Transductive Inference for Estimating Values of Functions , 1999, NIPS.

[7]  Daniele Marinazzo,et al.  Kernel method for clustering based on optimal target vector , 2005, cond-mat/0511630.

[8]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[9]  Mark Herbster,et al.  Combining Graph Laplacians for Semi-Supervised Learning , 2005, NIPS.

[10]  Nicola Ancona,et al.  An Invariance Property of Predictors in Kernel-Induced Hypothesis Spaces , 2006, Neural Computation.

[11]  Zhi-Hua Zhou,et al.  Semi-Supervised Regression with Co-Training , 2005, IJCAI.

[12]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[13]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[14]  Eytan Domany,et al.  Semi-Supervised Learning -- A Statistical Physics Approach , 2006, ArXiv.

[15]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[17]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[18]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.