Learning computer programs with the bayesian optimization algorithm

We describe an extension of the Bayesian Optimization Algorithm (BOA), a probabilistic model building genetic algorithm, to the domain of program tree evolution. The new system, BOA programming (BOAP), improves significantly on previous probabilistic model building genetic programming (PMBGP) systems in terms of the articulacy and open-ended flexibility of the models learned, and hence control over the distribution of instances generated. Innovations include a novel tree representation and a generalized program evaluation scheme.

[1]  H. Iba,et al.  Estimation of distribution programming based on Bayesian network , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[2]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[3]  Weixiong Zhang,et al.  A Novel Local Search Algorithm for the Traveling Salesman Problem that Exploits Backbones , 2005, IJCAI.

[4]  Jonathan J. Oliver Decision Graphs - An Extension of Decision Trees , 1993 .

[5]  Ben Goertzel,et al.  Novamente: An Integrative Architecture for General Intelligence , 2004, AAAI Technical Report.

[6]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[7]  Hitoshi Iba,et al.  Program Evolution by Integrating EDP and GP , 2004, GECCO.

[8]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[9]  D. Hofstadter Metamagical Themas: Questing for the Essence of Mind and Pattern , 1985 .

[10]  Olivier Bodenreider,et al.  Incorporating ontology-driven similarity knowledge into functional genomics: an exploratory study , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.

[11]  Hussein A. Abbass,et al.  Grammar model-based program evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[12]  B. Hamber Publications , 1998, Weed Technology.

[13]  D. Rumelhart,et al.  Predicting sunspots and exchange rates with connectionist networks , 1991 .

[14]  Tina Gwoing Yu,et al.  An analysis of the impact of functional programming techniques on genetic programming , 1999 .

[15]  D. Goldberg,et al.  Probabilistic Model Building and Competent Genetic Programming , 2003 .

[16]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[17]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[18]  Matthias Fuchs,et al.  Evolving Combinators , 1997, CADE.

[19]  Mikal Ziane,et al.  Parallel query processing with zigzag trees , 2005, The VLDB Journal.

[20]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[21]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[22]  Hussein A. Abbass,et al.  Program Evolution with Explicit Learning: a New Framework for Program Automatic Synthesis , 2003 .

[23]  Rafal Salustowicz,et al.  H-PIPE: Facilitating Hierarchical Program Evolution through Skip Nodes , 1998 .

[24]  Corso Elvezia Probabilistic Incremental Program Evolution , 1997 .

[25]  Atul J. Butte,et al.  Quantifying the relationship between co-expression, co-regulation and gene function , 2004, BMC Bioinformatics.

[26]  Harri Jj Aske Prediction of Sunspots by Gp , .

[27]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[28]  Weixiong Zhang,et al.  Backbone Guided Local Search for Maximum Satisfiability , 2003, IJCAI.

[29]  Peter A. N. Bosman,et al.  Learning Probabilistic Tree Grammars for Genetic Programming , 2004, PPSN.

[30]  Jan Komorowski,et al.  Learning Rule-based Models of Biological Process from Gene Expression Time Profiles Using Gene Ontology , 2003, Bioinform..

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Jan Komorowski,et al.  Predicting gene ontology biological process from temporal gene expression patterns. , 2003, Genome research.

[33]  Dan Boneh,et al.  Where Genetic Algorithms Excel , 2001, Evolutionary Computation.

[34]  李幼升,et al.  Ph , 1989 .

[35]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .