A fourth-order Cartesian grid embedded boundary method for Poisson’s equation

Author(s): Devendran, D; Graves, DT; Johansen, H; Ligocki, T | Abstract: In this paper, we present a fourth-order algorithm to solve Poisson's equation in two and three dimensions. We use a Cartesian grid, embedded boundary method to resolve complex boundaries. We use a weighted least squares algorithm to solve for our stencils. We use convergence tests to demonstrate accuracy and we show the eigenvalues of the operator to demonstrate stability. We compare accuracy and performance with an established second-order algorithm. We also discuss in depth strategies for retaining higher-order accuracy in the presence of nonsmooth geometries.

[1]  William Gropp,et al.  PETSc Users Manual: Revision 3.11 , 2019 .

[2]  R. LeVeque,et al.  Numerical Methods for Conservation Laws: From Analysis to Algorithms , 2017 .

[3]  Phillip Colella,et al.  HIGH-ACCURACY EMBEDDED BOUNDARY GRID GENERATION USING THE DIVERGENCE THEOREM , 2015 .

[4]  P. Colella,et al.  EBChombo Software Package for Cartesian Grid, Embedded Boundary Applications , 2014 .

[5]  Mark F. Adams,et al.  Chombo Software Package for AMR Applications Design Document , 2014 .

[6]  P. Colella,et al.  A cartesian grid embedded boundary method for the compressible Navier–Stokes equations , 2013 .

[7]  S. Pirzadeh Advanced Unstructured Grid Generation for Complex Aerodynamic Applications , 2013 .

[8]  C. Farhat,et al.  An Embedded Boundary Method for Viscous Fluid/Structure Interaction Problems and Application to Flexible Flapping Wings , 2012 .

[9]  Shahyar Pirzadeh,et al.  Advanced Unstructured Grid Generation for Complex Aerodynamics Applications , 2008 .

[10]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[11]  Vadim Shapiro,et al.  Semi-analytic geometry with R-functions , 2007, Acta Numerica.

[12]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[13]  P. Colella,et al.  A Higher-Order Upwind Method for Viscoelastic Flow in Irregular Geometries , 2006 .

[14]  D Trebotich,et al.  A penalty method to model particle interactions in DNA-laden flows. , 2006, Journal of nanoscience and nanotechnology.

[15]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[16]  R. Fedkiw,et al.  A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem , 2005 .

[17]  P. Colella,et al.  A cartesian grid embedded boundary method for the heat equation and poisson's equation in three dimensions , 2004 .

[18]  Farrokh Najmabadi,et al.  An embedded boundary method for viscous, conducting compressible flow , 2004, J. Comput. Phys..

[19]  Vicente Hernández,et al.  SLEPc: Scalable Library for Eigenvalue Problem Computations , 2002, VECPAR.

[20]  Eitan Tadmor,et al.  Adaptive Mollifiers for High Resolution Recovery of Piecewise Smooth Data from its Spectral Information , 2001, Found. Comput. Math..

[21]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[22]  Phillip Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[23]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[24]  M. Berger,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1997 .

[25]  L. Greengard,et al.  A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy , 1996 .

[26]  John B. Bell,et al.  Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .

[27]  L. Greengard,et al.  A Fast Poisson Solver for Complex Geometries , 1995 .

[28]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[29]  D. Graves,et al.  A Hybrid Multigrid Algorithm for Poisson’s equation using an Adaptive, Fourth Order Treatment of Cut Cells , 2015 .

[30]  G. Miller,et al.  AN EMBEDDED BOUNDARY METHOD FOR THE NAVIER-STOKES EQUATIONS ON A TIME-DEPENDENT DOMAIN , 2012 .

[31]  Phillip Colella,et al.  A Cartesian grid embedded boundary method for hyperbolic conservation laws , 2006 .

[32]  Jack J. Dongarra,et al.  Lapack95 users' guide , 2001, Software, environments, tools.

[33]  Daniel F. Martin,et al.  Solving Poisson's Equation using Adaptive Mesh Renemen t , 1996 .

[34]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .