2D Janus Niobium Oxydihalide NbOXY: Multifunctional Piezoelectric Semiconductor for Electronics, Photonics, Sensing and Sustainable Energy Applications

[1]  G. Lu,et al.  Large in-plane and out-of-plane piezoelectricity in 2D γ-LiMX2 (M=Al, Ga and In; X=S, Se and Te) monolayers , 2023, Materials Science in Semiconductor Processing.

[2]  Lling-Lling Tan,et al.  Evolutionary face-to-face 2D/2D bismuth-based heterojunction: The quest for sustainable photocatalytic applications , 2022, Applied Materials Today.

[3]  M. Palummo,et al.  Excitons and light-emission in semiconducting MoSi2X4 two-dimensional materials , 2022, npj 2D Materials and Applications.

[4]  Y. Ang,et al.  Terahertz Polarization Conversion from Optical Dichroism in a Topological Dirac Semimetal , 2022, 2208.11298.

[5]  Kwang-Ryeol Lee,et al.  Emerging Exotic Properties of Two-Dimensional Ternary Tetrahexagonal BCN: Tunable Anisotropic Transport Properties with Huge Excitonic Effects for Nanoelectronics and Optoelectronics , 2022, Materials Today Physics.

[6]  G. Eda,et al.  Giant second-harmonic generation in ferroelectric NbOI2 , 2022, Nature Photonics.

[7]  Guitao Zhang,et al.  Mechanical and electronic properties of αM2X3 ( , 2022, Physical Review B.

[8]  H. Zeng,et al.  Revealing the weak Fermi level pinning effect of 2D semiconductor/2D metal contact: A case of monolayer In2Ge2Te6 and its Janus structure In2Ge2Te3Se3 , 2022, Materials Today Physics.

[9]  Arnab K. Pal,et al.  Quantum‐Engineered Devices Based on 2D Materials for Next‐Generation Information Processing and Storage , 2022, Advanced materials.

[10]  Zhen Li,et al.  Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells , 2022, Science.

[11]  X. Zhuang,et al.  Highly anisotropic mechanical and optical properties of 2D NbOX2 (X = Cl, Br, I) revealed by first-principle , 2022, Nanotechnology.

[12]  Wee‐Jun Ong,et al.  Dimensionality-Dependent MoS2 toward Efficient Photocatalytic Hydrogen Evolution: From Synthesis to Modifications in Doping, Surface and Heterojunction Engineering , 2022, Materials Today Nano.

[13]  Sung Kim,et al.  Growth of two-dimensional Janus MoSSe by a single in situ process without initial or follow-up treatments , 2022, NPG Asia Materials.

[14]  Y. Ang,et al.  2D materials and heterostructures for photocatalytic water-splitting: a theoretical perspective , 2022, Journal of Physics D: Applied Physics.

[15]  H. Zeng,et al.  Enhanced interband tunneling in two-dimensional tunneling transistors through anisotropic energy dispersion , 2022, Physical Review B.

[16]  X. Duan,et al.  2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. , 2022, Chemical reviews.

[17]  G. Eda,et al.  Data-driven discovery of high performance layered van der Waals piezoelectric NbOI2 , 2022, Nature Communications.

[18]  Y. Chai,et al.  Strain engineering of quasi-1D layered TiS3 nanosheets toward giant anisotropic Raman and piezoresistance responses , 2021, Applied Physics Letters.

[19]  Shibo Wang,et al.  Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells , 2021, Materials Today Physics.

[20]  Y. Hao,et al.  Tuning the intrinsic electric field of Janus-TMDs to realize high-performance β-Ga2O3 device based on β-Ga2O3/Janus-TMD heterostructures , 2021, Materials Today Physics.

[21]  S. Wang,et al.  Flexible and transparent piezoelectric loudspeaker , 2021, npj Flexible Electronics.

[22]  Minglei Sun,et al.  Ultrahigh Carrier Mobility in the Two-Dimensional Semiconductors B8Si4, B8Ge4, and B8Sn4 , 2021, Chemistry of Materials.

[23]  H. Bai,et al.  Two-Dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) Monolayers: Half-Metallic Ferromagnets with Tunable Magnetic Properties under Strain. , 2021, ACS applied materials & interfaces.

[24]  Caofeng Pan,et al.  Piezotronics in two‐dimensional materials , 2021, InfoMat.

[25]  Bin Wang,et al.  Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2 , 2021, Results in Physics.

[26]  A. Sarkar,et al.  Interfacing 2D M2X (M = Na, K, Cs; X= O, S, Se, Te) monolayers for 2D excitonic and tandem solar cells , 2021 .

[27]  F. Huang,et al.  2D NbOI2: A Chiral Semiconductor with Highly In‐Plane Anisotropic Electrical and Optical Properties , 2021, Advanced materials.

[28]  M. Yagmurcukardes,et al.  Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X=S , Se, and Te , 2021, Physical Review B.

[29]  S. Tofail,et al.  Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies , 2021, Nature Communications.

[30]  A. Castellanos-Gómez,et al.  In-plane anisotropic optical and mechanical properties of two-dimensional MoO3 , 2021, npj 2D Materials and Applications.

[31]  Rajendra Singh,et al.  2D Layered Materials for Ultraviolet Photodetection: A Review , 2021, Advanced Optical Materials.

[32]  Nityasagar Jena,et al.  Group-IV(A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity. , 2021, Nanoscale.

[33]  H. Tong,et al.  Theoretical prediction of electronic, transport, optical, and thermoelectric properties of Janus monolayers In2XO ( X=S,Se,Te ) , 2021, Physical Review B.

[34]  C. Cao,et al.  Tuning Rashba effect, band inversion, and spin-charge conversion of Janus XSn2Y monolayers via an external field , 2021 .

[35]  C. Liang,et al.  Two-Dimensional IV-V Monolayers with Highly Anisotropic Carrier Mobility and Electric Transport Properties. , 2021, The journal of physical chemistry letters.

[36]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[37]  C. Duan 段,et al.  Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI2 Monolayer , 2021, Chinese Physics Letters.

[38]  I. Esqueda,et al.  Room‐Temperature Synthesis of 2D Janus Crystals and their Heterostructures , 2020, Advanced materials.

[39]  A. De Sarkar,et al.  Interfacial hybridization of Janus MoSSe and BX (X = P, As) monolayers for ultrathin excitonic solar cells, nanopiezotronics and low-power memory devices. , 2020, Nanoscale.

[40]  Dingtao Ma,et al.  Recent advances in anisotropic two-dimensional materials and device applications , 2020, Nano Research.

[41]  Jianzhou Zhao,et al.  Highly anisotropic two-dimensional metal in monolayer MoOCl2 , 2020, Physical Review B.

[42]  Nityasagar Jena,et al.  Ultrahigh Out-of-Plane Piezoelectricity Meets Giant Rashba Effect in 2D Janus Monolayers and Bilayers of Group IV Transition-Metal Trichalcogenides , 2020 .

[43]  C. Stampfl,et al.  First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. , 2020, Physical chemistry chemical physics : PCCP.

[44]  L. Kou,et al.  Janus WSSe Monolayer: Excellent Photocatalyst for Overall Water-splitting. , 2020, ACS applied materials & interfaces.

[45]  Q. Yan,et al.  Monolayer 2D semiconducting tellurides for high-mobility electronics , 2020, 2005.11377.

[46]  Nityasagar Jena,et al.  Ultra-low lattice thermal conductivity and giant phonon–electric field coupling in hafnium dichalcogenide monolayers , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  Nityasagar Jena,et al.  Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X = S, Se) monolayers , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Nityasagar Jena,et al.  Nanoscale Interfaces of Janus Monolayers of Transition Metal Dichalcogenides for 2D Photovoltaic and Piezoelectric Applications , 2020 .

[49]  M. Lu,et al.  Layer-Dependent and In-Plane Anisotropic Properties of Low-Temperature Synthesized Few-Layer PdSe2 Single Crystals. , 2020, ACS nano.

[50]  Jianzhou Zhao,et al.  Fermi liquid behavior and colossal magnetoresistance in layered MoOCl2 , 2020, 2003.11905.

[51]  G. Duscher,et al.  Low Energy Implantation into Transition Metal Dichalcogenide Monolayers to Form Janus Structures. , 2020, ACS nano.

[52]  Yu Ping Wu,et al.  New group V graphyne: two-dimensional direct semiconductors with remarkable carrier mobilities, thermoelectric performance, and thermal stability , 2020 .

[53]  Jingchuan Zhu,et al.  Modeling of alloying effect on elastic properties in BCC Nb-Ti-V-Zr solid solution: From unary to quaternary , 2020 .

[54]  Jun Zhu,et al.  Thermoelectric properties of Janus MXY (M = Pd, Pt; X, Y = S, Se, Te) transition-metal dichalcogenide monolayers from first principles , 2020 .

[55]  Xuewen Wang,et al.  Two‐dimensional materials: From mechanical properties to flexible mechanical sensors , 2019, InfoMat.

[56]  Sining Yun,et al.  Electronic, elastic and piezoelectric properties of boron-V group binary and ternary monolayers , 2019 .

[57]  Ying Dai,et al.  Janus TiXY Monolayers with Tunable Berry Curvature. , 2019, The journal of physical chemistry letters.

[58]  M. Katsnelson,et al.  Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms , 2019, Nano Energy.

[59]  F. Miao,et al.  Van der Waals Heterostructures for High‐Performance Device Applications: Challenges and Opportunities , 2019, Advanced materials.

[60]  P. Li,et al.  Nb2SiTe4 and Nb2GeTe4: Unexplored 2D Ternary Layered Tellurides with High Stability, Narrow Band Gap and High Electron Mobility , 2019, Journal of Electronic Materials.

[61]  R. Ahuja,et al.  An emerging Janus MoSeTe material for potential applications in optoelectronic devices , 2019, Journal of Materials Chemistry C.

[62]  Ju Li,et al.  Niobium oxide dihalides NbOX2: a new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity , 2019, Nanoscale Horizons.

[63]  Bingchao Yang,et al.  A novel two-dimensional δ-InP3 monolayer with high stability, tunable bandgap, high carrier mobility, and gas sensing of NO2 , 2019, Journal of Materials Chemistry C.

[64]  Lei Shen,et al.  2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches , 2019, Scientific Data.

[65]  Xiaodong Hu,et al.  The Opposite Anisotropic Piezoresistive Effect of ReS2. , 2019, ACS nano.

[66]  Qiang Sun,et al.  Symmetry-breaking induced large piezoelectricity in Janus tellurene materials. , 2019, Physical chemistry chemical physics : PCCP.

[67]  Ying Dai,et al.  Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light , 2019, Journal of Materials Chemistry A.

[68]  Marcin Ma'zdziarz Comment on ‘The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals’ , 2018, 2D Materials.

[69]  X. Miao,et al.  KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism. , 2018, Nanoscale.

[70]  A. Sarkar,et al.  Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting Group IVB dichalcogenide monolayers , 2018 .

[71]  Kwok‐yin Wong,et al.  Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting , 2018, Materials Today Energy.

[72]  Hu Xu,et al.  Extremely High Mobilities in Two-Dimensional Group-VA Binary Compounds with Large Conversion Efficiency for Solar Cells , 2018, The Journal of Physical Chemistry C.

[73]  Yanli Wang,et al.  Uncovering a Stable Phase in Group V Transition-metal Dinitride (MN2, M = Ta, Nb, V) Nanosheets and Their Electronic Properties via First-principles Investigations , 2018, The Journal of Physical Chemistry C.

[74]  Y. Liu,et al.  Alloying effect on phase stability, elastic and thermodynamic properties of Nb-Ti-V-Zr high entropy alloy , 2018, Intermetallics.

[75]  B. Yakobson,et al.  In Pursuit of 2D Materials for Maximum Optical Response. , 2018, ACS nano.

[76]  Yingchun Cheng,et al.  Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. , 2018, Small.

[77]  Usman Khan,et al.  Piezoelectric properties in two-dimensional materials: Simulations and experiments , 2018, Materials Today.

[78]  X. Wu,et al.  Electrochemically active separators with excellent catalytic ability toward high-performance Li–S batteries , 2018 .

[79]  H. Sahin,et al.  Janus single layers of In2SSe: A first-principles study , 2018 .

[80]  Lingling Wang,et al.  New two-dimensional V-V binary compounds with a honeycomb-like structure: a first-principles study , 2018 .

[81]  J. Perdew,et al.  Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures. , 2018, The Journal of chemical physics.

[82]  Shui-Tong Lee,et al.  Janus Structures of Transition Metal Dichalcogenides as the Heterojunction Photocatalysts for Water Splitting , 2018 .

[83]  W. Jo,et al.  Virtual Out-of-Plane Piezoelectric Response in MoS2 Layers Controlled by Ferroelectric Polarization. , 2018, ACS applied materials & interfaces.

[84]  Huanli Dong,et al.  Short-Wave Near-Infrared Linear Dichroism of Two-Dimensional Germanium Selenide. , 2017, Journal of the American Chemical Society.

[85]  Tae Yun Kim,et al.  Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators , 2017, Advanced materials.

[86]  V. Shenoy,et al.  Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. , 2017, ACS Nano.

[87]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[88]  Jijun Zhao,et al.  Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers , 2017 .

[89]  Gowoon Cheon,et al.  Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures. , 2017, Nano letters.

[90]  S. Lau,et al.  High‐Electron‐Mobility and Air‐Stable 2D Layered PtSe2 FETs , 2017, Advanced materials.

[91]  H. Zeng,et al.  A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2 V−1 s−1 , 2016 .

[92]  Zhirong Liu,et al.  Mobility anisotropy of two-dimensional semiconductors , 2016, 1609.06416.

[93]  H. Zeng,et al.  A promising two-dimensional channel material: monolayer antimonide phosphorus , 2016, Science China Materials.

[94]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics , 2016 .

[95]  Wanchul Seung,et al.  Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators , 2016 .

[96]  Kurt Stokbro,et al.  First-principles method for electron-phonon coupling and electron mobility: Applications to two-dimensional materials , 2015, 1511.02045.

[97]  S. Du,et al.  The thermal and electrical properties of the promising semiconductor MXene Hf2CO2 , 2015, Scientific Reports.

[98]  I. Oh,et al.  Piezoelectric thin films: an integrated review of transducers and energy harvesting , 2016 .

[99]  Mark Asta,et al.  A database to enable discovery and design of piezoelectric materials , 2015, Scientific Data.

[100]  Richard G Hennig,et al.  Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. , 2015, ACS nano.

[101]  R. Hennig,et al.  Rashba effect in single-layer antimony telluroiodide SbTeI , 2015 .

[102]  A. Kis,et al.  Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2. , 2015, Nano letters.

[103]  Yakov Kopelevich,et al.  Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates , 2015, Nature Communications.

[104]  Lain-Jong Li,et al.  Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics , 2015, Nature Communications.

[105]  Zi Jing Wong,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[106]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[107]  Wenyi Yan,et al.  Piezoelectric properties of graphene oxide: A first-principles computational study , 2014 .

[108]  P. Ajayan,et al.  Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets , 2014, Nature Communications.

[109]  X. Kong,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature Communications.

[110]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[111]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[112]  H. Ohsato Origin of Piezoelectricity on Langasite , 2012 .

[113]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[114]  K. Michel,et al.  Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride , 2009 .

[115]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[116]  T. Paszkiewicz,et al.  Fourth‐rank tensors of [[V2]2]‐type and elastic material constants for 2D crystals , 2008 .

[117]  M. R. Freeman,et al.  Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.

[118]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[119]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[120]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[121]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[122]  Angus I. Kingon,et al.  Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications , 2005 .

[123]  Astronomy,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[124]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[125]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[126]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[127]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[128]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[129]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[130]  K. Blotekjaer Transport equations for electrons in two-valley semiconductors , 1970 .

[131]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[132]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[133]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[134]  Conyers Herring,et al.  Transport properties of a many-valley semiconductor , 1955 .

[135]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[136]  H. Bethe,et al.  A Relativistic equation for bound state problems , 1951 .

[137]  David Pines,et al.  A Collective Description of Electron Interactions. I. Magnetic Interactions , 1951 .

[138]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .