Variational Bayesian inference image restoration using a product of total variation-like image priors

In this paper a new image prior is introduced and used in image restoration. This prior is based on products of spatially weighted Total Variations (TV). These spatial weights provide this prior with the flexibility to better capture local image features than previous TV based priors. Bayesian inference is used for image restoration with this prior via the variational approximation. The proposed algorithm is fully automatic in the sense that all necessary parameters are estimated from the data. Numerical experiments are shown which demonstrate that image restoration based on this prior compares favorably with previous state-of-the-art restoration algorithms.

[1]  José M. Bioucas-Dias,et al.  Adaptive total variation image deconvolution: A majorization-minimization approach , 2006, 2006 14th European Signal Processing Conference.

[2]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[4]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[5]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[6]  Aggelos K. Katsaggelos,et al.  Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation , 2008, IEEE Transactions on Image Processing.

[7]  Nikolas P. Galatsanos,et al.  Variational Bayesian Image Restoration Based on a Product of $t$-Distributions Image Prior , 2008, IEEE Transactions on Image Processing.

[8]  José M. Bioucas-Dias,et al.  Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.