MINRES-QLP: A Krylov Subspace Method for Indefinite or Singular Symmetric Systems
暂无分享,去创建一个
Michael A. Saunders | Christopher C. Paige | Sou-Cheng T. Choi | Sou-Cheng T. Choi | M. Saunders | C. Paige
[1] J. Hadamard. Sur les problemes aux derive espartielles et leur signification physique , 1902 .
[2] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[3] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[4] G. Stewart. On the Continuity of the Generalized Inverse , 1969 .
[5] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[6] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[7] G. W. Stewart,et al. Research, Development, and LINPACK , 1977 .
[8] L. Eldén. Algorithms for the regularization of ill-conditioned least squares problems , 1977 .
[9] J. G. Lewis. Algorithms for sparse matrix eigenvalue problems , 1977 .
[10] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[11] Michael A. Saunders,et al. Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.
[12] Gene H. Golub,et al. Matrix computations , 1983 .
[13] P. Strevens. Iii , 1985 .
[14] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[15] E. F. Kaasschieter,et al. Preconditioned conjugate gradients for solving singular systems , 1988 .
[16] Per Christian Hansen,et al. Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990, SIAM J. Sci. Comput..
[17] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[18] Y. Notay. Solving positive (semi) definite linear systems by preconditioned iterative methods , 1991 .
[19] Louette R. Johnson Lutjens. Research , 2006 .
[20] Michael A. Saunders,et al. Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..
[21] Dianne P. O'Leary,et al. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..
[22] R. Freund,et al. A new Krylov-subspace method for symmetric indefinite linear systems , 1994 .
[23] M. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG , 1995 .
[24] P. Dooren,et al. High performance algorithms for Toeplitz and block Toeplitz matrices , 1996 .
[25] J. Nagy,et al. Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques , 1996 .
[26] M. Saunders. Computing projections with LSQR , 1997 .
[27] L. Trefethen,et al. Numerical linear algebra , 1997 .
[28] Franciszek A. Dul,et al. MINRES and MINERR Are Better than SYMMLQ in Eigenpair Computations , 1998, SIAM J. Sci. Comput..
[29] A. Wathen,et al. Minimum residual methods for augmented systems , 1998 .
[30] Panayot S. Vassilevski,et al. Preconditioning of Indefinite and Almost Singular Finite Element Elliptic Equations , 1998, SIAM J. Sci. Comput..
[31] Yin Zhang,et al. Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .
[32] G. W. Stewart,et al. The QLP Approximation to the Singular Value Decomposition , 1999, SIAM J. Sci. Comput..
[33] M. Gutknecht,et al. Residual Smoothing Techniques: Do They Improve the Limiting Accuracy of Iterative Solvers? , 1999 .
[34] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[35] Misha Elena Kilmer,et al. Iterative Regularization and MINRES , 1999, SIAM J. Matrix Anal. Appl..
[36] William W. Hager,et al. Iterative Methods for Nearly Singular Linear Systems , 2000, SIAM J. Sci. Comput..
[37] J. Demmel,et al. Balancing sparse matrices for computing eigenvalues , 2000 .
[38] Gerard L. G. Sleijpen,et al. Differences in the Effects of Rounding Errors in Krylov Solvers for Symmetric Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[39] Stephen A. Vavasis,et al. Accurate Solution of Weighted Least Squares by Iterative Methods , 2000, SIAM J. Matrix Anal. Appl..
[40] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[41] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[42] Valeria Simoncini,et al. Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..
[43] Z. Bai,et al. Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .
[44] K. Toh,et al. Block preconditioners for symmetric indefinite linear systems , 2004 .
[45] Gene H. Golub,et al. Scaling by Binormalization , 2004, Numerical Algorithms.
[46] M. Arioli,et al. Least-squares problems, normal equations, and stopping criteria for the conjugate gradient method , 2008 .
[47] Kaustuv. IPSOL: An interior point solver for nonconvex optimization problems , 2009 .
[48] Xiao-Wen Chang,et al. Stopping Criteria for the Iterative Solution of Linear Least Squares Problems , 2009, SIAM J. Matrix Anal. Appl..
[49] D. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas , 2009 .
[50] A. Bradley. Algorithms for the Equilibration of Matrices and Their Application to Limited-Memory Quasi-Newton Methods , 2010 .
[51] Pavel Jiránek,et al. Estimating the Backward Error in LSQR , 2010, SIAM J. Matrix Anal. Appl..
[52] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[53] G. Meurant. Least Squares Problems , 2018, Explorations in Numerical Analysis.