Microscopic description of the fusion excitation function of 32,36S+90,94,96Zr

The fusion excitation function for the systems [Formula: see text]S+[Formula: see text]Zr is investigated using a microscopic internuclear potential derived from Skyrme energy density functional. The inputs in this approach are the proton and neutron density distributions of the interacting nuclei, which are derived from Skyrme–Hartree–Fock calculations. The SkM[Formula: see text] interaction is used in the calculation of the nuclear densities as well as the internuclear potential. The coupling to low lying inelastic excited states of target and projectile is considered. The role of the neutron transfer is discussed, where it is considered through the CCFULL model calculation. A good agreement with the experimental data is obtained without adjustable parameters.

[1]  Raj Kumar,et al.  Relevance of different Skyrme forces in the dynamics of Ca40,48+96Zr reactions , 2019, Nuclear Physics A.

[2]  Raj Kumar,et al.  Effect of different nuclear density approximations on fusion dynamics within Skyrme Energy Density Formalism , 2018, The European Physical Journal A.

[3]  D. H. Luong,et al.  Nuclear structure dependence of fusion hindrance in heavy element synthesis , 2018, Physical Review C.

[4]  E. Strano,et al.  Fusion hindrance for the positive Q-value system C12+Si30 , 2018 .

[5]  B. Wang,et al.  Theoretical study of fusion reactions 32S + 94,96Zr and 40Ca + 94,96Zr and quadrupole deformation of 94Zr , 2015, 1511.08965.

[6]  M. Rashdan Sub-barrier fusion calculations for the neutron star crust using the microscopic Brueckner G -matrix and Skyrme energy density functionals , 2015 .

[7]  F. Yang,et al.  Fusion of 32S + 94Zr: Further exploration of the effect of the positive Q(xn) value neutron transfer channels , 2014 .

[8]  D. Verma Sub-barrier fusion cross-sections for 32S+90,96Zr, using the semiclassical extended Thomas-Fermi approach of energy density formalism , 2013 .

[9]  W. Scheid,et al.  Role of neutron transfer in capture processes at sub-barrier energies , 2012 .

[10]  R. Kharab,et al.  DIFFUSENESS OF WOODS–AXON POTENTIAL AND SUB-BARRIER FUSION , 2011 .

[11]  F. Yang,et al.  Near-barrier fusion of S-32 + Zr-90, Zr-96: The effect of multi-neutron transfers in sub-barrier fusion reactions , 2010 .

[12]  I. Dutt,et al.  Study of Fusion Dynamics Using Skyrme Energy Density Formalism with Different Surface Corrections , 2010, 1011.4354.

[13]  Min Liu,et al.  Heavy-ion fusion and scattering with Skyrme energy density functional , 2009 .

[14]  K. Hagino,et al.  Systematics of threshold incident energy for deep sub-barrier fusion hindrance , 2007, 0704.2827.

[15]  W. Greiner,et al.  Sub-barrier fusion of neutron-rich nuclei and its astrophysical consequences , 2007 .

[16]  W. Scheid,et al.  Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei , 2006, nucl-th/0609045.

[17]  R. Donangelo,et al.  Fusion and breakup of weakly bound nuclei , 2006 .

[18]  Min Liu,et al.  Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers , 2005, nucl-th/0509069.

[19]  K. Rehm,et al.  NUCLEAR ASTROPHYSICS MEASUREMENTS WITH RADIOACTIVE BEAMS , 2003 .

[20]  V. Zagrebaev Sub-barrier fusion enhancement due to neutron transfer , 2003 .

[21]  V. Denisov,et al.  Entrance channel potentials in the synthesis of the heaviest nuclei , 2002, nucl-th/0206019.

[22]  J. Bartel,et al.  Nuclear mean fields through self-consistent semiclassical calculations , 2002, nucl-th/0203037.

[23]  V. Denisov,et al.  Interaction potential between heavy ions , 2002 .

[24]  A. Gadea,et al.  Sub-barrier fusion of the magic nuclei 40,48Ca+48Ca , 2001 .

[25]  W. D. Myers,et al.  Nucleus-nucleus proximity potential and superheavy nuclei , 2000 .

[26]  M. Bisogno,et al.  Near-barrier fusion of 36 S+ 90,96 Zr: The effect of the strong octupole vibration of 96 Zr , 2000 .

[27]  K. Hagino,et al.  A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions , 1999, nucl-th/9903074.

[28]  A. Stefanini,et al.  MEASURING BARRIERS TO FUSION , 1998 .

[29]  F. Scarlassara,et al.  A case study of collectivity, transfer and fusion enhancement , 1998 .

[30]  A. Balantekin,et al.  Quantum tunneling in nuclear fusion , 1997, nucl-th/9708036.

[31]  L. Baby,et al.  One- and two-nucleon transfer in the {sup 28} Si+{sup 68}Zn system at energies below the Coulomb barrier , 1997 .

[32]  F. Scarlassara,et al.  Multinucleon transfer reactions in {sup 40}Ca+{sup 124}Sn , 1996 .

[33]  Napoli,et al.  Influence of complex surface vibrations on the fusion of 58Ni+60Ni. , 1995, Physical review letters.

[34]  Wei,et al.  Experimental determination of the fusion-barrier distribution for the 154Sm+16O reaction. , 1991, Physical review letters.

[35]  N. Rowley,et al.  On the “distribution of barriers” interpretation of heavy-ion fusion , 1991 .

[36]  Robinson,et al.  Fusion cross sections for 46,50Ti+90Zr,93Nb and some systematics of heavy-ion fusion at barrier and subbarrier energies. , 1990, Physical review. C, Nuclear physics.

[37]  Hyojun Kim Transfer reactions for the 50Ti + 90Zr system below the Coulomb barrier , 1988 .

[38]  Shapira,et al.  Transfer reactions for the 50Ti + 90Zr system below the Coulomb barrier. , 1988, Physical review. C, Nuclear physics.

[39]  M. Brack,et al.  Selfconsistent semiclassical description of average nuclear properties—a link between microscopic and macroscopic models , 1985 .

[40]  R. Gupta,et al.  Proximity potential and the surface energy coefficient calculated using an energy density formalism , 1984 .

[41]  H. Gräf Thomas-Fermi kinetic-energy density with gradient corrections , 1980 .

[42]  H. Krappe,et al.  Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations , 1979 .

[43]  D. Brink,et al.  The real part of the nucleus-nucleus interaction , 1976 .

[44]  D. Brink,et al.  Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei , 1972 .