Linear preselective policies for stochastic project scheduling
暂无分享,去创建一个
[1] Maurice Queyranne,et al. Approximation Bounds for a General Class of Precedence Constrained Parallel Machine Scheduling Problems , 1998, IPCO.
[2] Karsten Weihe,et al. Improved Approximations for Minimum Cardinality Quadrangulations of Finite Element Meshes , 1997, ESA.
[3] Franz Josef Radermacher,et al. Algorithmic approaches to preselective strategies for stochastic scheduling problems , 1983, Networks.
[4] Stefan Felsner,et al. Interval Reductions and Extensions of Orders: Bijections to Chains in Lattices , 1998 .
[5] Franz Josef Radermacher,et al. Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.
[6] Rolf H. Möhring,et al. A Computational Study on Bounding the Makespan Distribution in Stochastic Project Networks , 2001, Ann. Oper. Res..
[7] Martin Skutella,et al. Convex Quadratic Programming Relaxations for Network Scheduling Problems , 1999, ESA.
[8] Jane N. Hagstrom,et al. Computational complexity of PERT problems , 1988, Networks.
[9] J. H. Patterson,et al. An Algorithm for a general class of precedence and resource constrained scheduling problems , 1989 .
[10] Karell Bertet,et al. Weak-Order Extensions of an Order , 1997, WG.
[11] Friedrich Eisenbrand,et al. On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..
[12] Friedrich Eisenbrand,et al. Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.
[13] Rolf H. Möhring,et al. Approximation in stochastic scheduling: the power of LP-based priority policies , 1999, JACM.
[14] Ronald L. Graham,et al. Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.
[15] Rolf H. Möhring,et al. Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..
[16] F. J. Radermacher,et al. Chapter 2 – THE ORDER-THEORETIC APPROACH TO SCHEDULING: THE DETERMINISTIC CASE , 1989 .
[17] Ronald L. Graham,et al. Bounds for certain multiprocessing anomalies , 1966 .
[18] Jens Gustedt,et al. Linear-time register allocation for a fixed number of registers , 1998, SODA '98.
[19] Gerhard J. Woeginger,et al. A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines , 2000, Math. Oper. Res..
[20] Vidyadhar G. Kulkarni,et al. A classified bibliography of research on stochastic PERT networks: 1966-1987 , 1989 .
[21] Rolf H. Möhring,et al. Resource-Constrained Project Scheduling: Computing Lower Bounds by Solving Minimum Cut Problems , 1999, ESA.
[22] Martin Skutella,et al. Random-Based Scheduling: New Approximations and LP Lower Bounds , 1997, RANDOM.
[23] Eugene L. Lawler,et al. Sequencing and scheduling: algorithms and complexity , 1989 .
[24] Gideon Weiss,et al. Stochastic scheduling problems I — General strategies , 1984, Z. Oper. Research.
[25] Rolf H. Möhring,et al. Complexity and Modeling Aspects of Mesh Refinement into Quadrilaterals , 1997, Algorithmica.
[26] Thomas Kämpke. Optimalitätsaussagen für spezielle stochastische Schedulingprobleme , 1985 .
[27] David B. Shmoys,et al. Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms , 1997, Math. Oper. Res..