Linear preselective policies for stochastic project scheduling

Abstract. In the context of stochastic resource-constrained project scheduling we introduce a novel class of scheduling policies, the linear preselective policies. They combine the benefits of preselective policies and priority policies; two classes that are well known from both deterministic and stochastic scheduling. We study several properties of this new class of policies which indicate its usefulness for computational purposes. Based on a new representation of preselective policies as and/orprecedence constraints we derive efficient algorithms for computing earliest job start times and state a necessary and sufficient dominance criterion for preselective policies. A computational experiment based on 480 instances empirically validates the theoretical findings.

[1]  Maurice Queyranne,et al.  Approximation Bounds for a General Class of Precedence Constrained Parallel Machine Scheduling Problems , 1998, IPCO.

[2]  Karsten Weihe,et al.  Improved Approximations for Minimum Cardinality Quadrangulations of Finite Element Meshes , 1997, ESA.

[3]  Franz Josef Radermacher,et al.  Algorithmic approaches to preselective strategies for stochastic scheduling problems , 1983, Networks.

[4]  Stefan Felsner,et al.  Interval Reductions and Extensions of Orders: Bijections to Chains in Lattices , 1998 .

[5]  Franz Josef Radermacher,et al.  Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.

[6]  Rolf H. Möhring,et al.  A Computational Study on Bounding the Makespan Distribution in Stochastic Project Networks , 2001, Ann. Oper. Res..

[7]  Martin Skutella,et al.  Convex Quadratic Programming Relaxations for Network Scheduling Problems , 1999, ESA.

[8]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[9]  J. H. Patterson,et al.  An Algorithm for a general class of precedence and resource constrained scheduling problems , 1989 .

[10]  Karell Bertet,et al.  Weak-Order Extensions of an Order , 1997, WG.

[11]  Friedrich Eisenbrand,et al.  On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..

[12]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[13]  Rolf H. Möhring,et al.  Approximation in stochastic scheduling: the power of LP-based priority policies , 1999, JACM.

[14]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[15]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[16]  F. J. Radermacher,et al.  Chapter 2 – THE ORDER-THEORETIC APPROACH TO SCHEDULING: THE DETERMINISTIC CASE , 1989 .

[17]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[18]  Jens Gustedt,et al.  Linear-time register allocation for a fixed number of registers , 1998, SODA '98.

[19]  Gerhard J. Woeginger,et al.  A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines , 2000, Math. Oper. Res..

[20]  Vidyadhar G. Kulkarni,et al.  A classified bibliography of research on stochastic PERT networks: 1966-1987 , 1989 .

[21]  Rolf H. Möhring,et al.  Resource-Constrained Project Scheduling: Computing Lower Bounds by Solving Minimum Cut Problems , 1999, ESA.

[22]  Martin Skutella,et al.  Random-Based Scheduling: New Approximations and LP Lower Bounds , 1997, RANDOM.

[23]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[24]  Gideon Weiss,et al.  Stochastic scheduling problems I — General strategies , 1984, Z. Oper. Research.

[25]  Rolf H. Möhring,et al.  Complexity and Modeling Aspects of Mesh Refinement into Quadrilaterals , 1997, Algorithmica.

[26]  Thomas Kämpke Optimalitätsaussagen für spezielle stochastische Schedulingprobleme , 1985 .

[27]  David B. Shmoys,et al.  Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms , 1997, Math. Oper. Res..