WAMR: An adaptive wavelet method for the simulation of compressible reacting flow. Part I. Accuracy and efficiency of algorithm

Abstract The Wavelet Adaptive Multiresolution Representation (WAMR) method provides a robust method for controlling spatial grid adaptation — fine grid spacing in regions where a solution varies greatly (i.e., near steep gradients, or near-singularities) and a much coarser grid where the solution varies slowly. Subsequently, a wide range of spatial scales, often demanded in challenging continuum physics problems, can be efficiently captured. Furthermore, the wavelet transform provides a direct measure of local error at each collocation point, effectively producing automatically verified solutions. The method is applied to the solution of unsteady, compressible, reactive flow equations, and includes detailed diffusive transport and chemical kinetics models. Accuracy and performance of the method are examined on several test problems. The sparse grids produced by the WAMR method exhibit an impressive compression of the solution, reducing the number of collocation points used by factors of many orders of magnitude when compared to uniform grids of equivalent resolution.

[1]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  Jinchao Xu,et al.  Galerkin-wavelet methods for two-point boundary value problems , 1992 .

[4]  D. P. Young,et al.  A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics , 1990 .

[5]  Samuel Paolucci,et al.  Wavelet‐based adaptive multiresolution computation of viscous reactive flows , 2006 .

[6]  Silvia Bertoluzza Adaptive wavelet collocation method for the solution of Burgers equation , 1996 .

[7]  Michael Griebel,et al.  Adaptive Sparse Grids for Hyperbolic Conservation Laws , 1999 .

[8]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[9]  Amirtham Rajagopal,et al.  A combined r-h adaptive strategy based on material forces and error assessment for plane problems and bimaterial interfaces , 2007 .

[10]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[11]  Alexei M. Khokhlov,et al.  Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations , 1997, astro-ph/9701194.

[12]  K. Mazaheri,et al.  Diffusion and hydrodynamic instabilities in gaseous detonations , 2012 .

[13]  Samuel Paolucci,et al.  Adaptive Wavelet Method for Incompressible Flows in Complex Domains , 2005 .

[14]  O. Vasilyev,et al.  A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain , 1996 .

[15]  Daniel Livescu,et al.  Adaptive wavelet collocation method simulations of Rayleigh–Taylor instability , 2010 .

[16]  E. A. Mason,et al.  FORMAL KINETIC THEORY OF TRANSPORT PHENOMENA IN POLYATOMIC GAS MIXTURES , 1963 .

[17]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[18]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[19]  Kai Schneider,et al.  Coherent Vortex Simulation (CVS), A Semi-Deterministic Turbulence Model Using Wavelets , 2001 .

[20]  G. Taylor The formation of a blast wave by a very intense explosion I. Theoretical discussion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Damrongsak Wirasaet,et al.  Numerical solutions of multi-dimensional partial differential equations using an adaptive wavelet method , 2007 .

[22]  Tariq D. Aslam,et al.  The effect of diffusion on the dynamics of unsteady detonations , 2012, Journal of Fluid Mechanics.

[23]  Samuel Paolucci,et al.  Wavelet Adaptive Multiresolution Representation: Applications to Viscous Multiscale Flow Simulations , 2006, Int. J. Wavelets Multiresolution Inf. Process..

[24]  Mauro Valorani,et al.  The G-Scheme: A framework for multi-scale adaptive model reduction , 2009, J. Comput. Phys..

[25]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[26]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[27]  G. Billet,et al.  Impact of volume viscosity on a shock–hydrogen-bubble interaction , 2008 .

[28]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[29]  Frank Koster A Proof of the Consistency of the Finite Difference Technique on Sparse Grids , 2000, Computing.

[30]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[31]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[32]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[33]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[34]  Alexandre Ern,et al.  Multicomponent transport algorithms , 1994 .

[35]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[36]  Oleg V. Vasilyev,et al.  An Adaptive Wavelet Collocation Method for Fluid-Structure Interaction at High Reynolds Numbers , 2005, SIAM J. Sci. Comput..

[37]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[38]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[39]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[40]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[41]  M. Repetto,et al.  A comparison of adaptive strategies for mesh refinement based on 'a posteriori' local error estimation procedures , 1990 .

[42]  Jacques Periaux,et al.  Wavelet methods in computational fluid dynamics , 1993 .

[43]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[44]  O. Vasilyev,et al.  A Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs , 1997 .

[45]  Jacques Liandrat,et al.  Numerical resolution of the burgers equation using the wavelet transform , 1990 .

[46]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[47]  Silvia Bertoluzza,et al.  Wavelet Methods for the Numerical Solution of Boundary Value Problems on the Interval , 1994 .

[48]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[49]  Naoki Saito,et al.  Multiresolution representations using the auto-correlation functions of compactly supported wavelets , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[50]  Jerald L Schnoor,et al.  What the h? , 2008, Environmental science & technology.

[51]  R. LeVeque Numerical methods for conservation laws , 1990 .

[52]  Nicholas K.-R. Kevlahan,et al.  An adaptive multilevel wavelet collocation method for elliptic problems , 2005 .

[53]  Michael Griebel,et al.  Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations , 2000 .

[54]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[55]  Sanford Gordon,et al.  NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species , 2002 .

[56]  Nikos G. Pantelelis,et al.  THE PARALLEL BLOCK ADAPTIVE MULTIGRID METHOD FOR THE IMPLICIT SOLUTION OF THE EULER EQUATIONS , 1996 .

[57]  Samuel Paolucci,et al.  WAMR: An adaptive wavelet method for the simulation of compressible reacting flow. Part II. The parallel algorithm , 2014, J. Comput. Phys..

[58]  I Babuska,et al.  The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .

[59]  Samuel Paolucci,et al.  Accurate Spatial Resolution Estimates for Reactive Supersonic Flow with Detailed Chemistry , 2005 .

[60]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[61]  Robert Prosser,et al.  Wavelet methods in computational combustion , 2011 .

[62]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[63]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[64]  Andrew McIlroy,et al.  Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels , 2006 .

[65]  John R. Williams,et al.  Wavelet–Galerkin solutions for one‐dimensional partial differential equations , 1994 .

[66]  Siegfried Müller,et al.  A multilevel finite volume method with multiscale-based grid adaptation for steady compressible flows , 2009 .

[67]  Samuel Paolucci,et al.  Viscous detonation in H2‒O2‒Ar using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation , 2001 .

[68]  Elaine S. Oran,et al.  Origins of the deflagration-to-detonation transition in gas-phase combustion , 2007 .

[69]  A. M. Khokhlov,et al.  Fully Threaded Tree for Adaptive Refinement Fluid Dynamics Simulations , 1998 .

[70]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[71]  Sônia M. Gomes,et al.  Adaptive wavelet representation and differentiation on block-structured grids , 2003 .

[72]  S. Dubuc Interpolation through an iterative scheme , 1986 .