Comparative study of alpha + nucleus elastic scattering using different models

The alpha (α) elastic scattering from different targets potential over the energy range 10–240 MeV has been analyzed in the framework of the single-folding (SF) optical model. Four targets are considered, namely, 24Mg, 28Si, 32S and 40Ca. The SF calculations for the real central part of the nuclear optical potential are performed by folding an effective α–α interaction with the α-cluster distribution density in the target nucleus. The imaginary part of the optical potential is expressed in the phenomenological Woods–Saxon (WS) form. The calculated angular distributions of the elastic scattering differential cross-section using the derived semimicroscopic potentials successfully reproduce 36 sets of data all over the measured angular ranges. The obtained results confirm the validity of the α-cluster structure of the considered nuclei. For the sake of comparison, the same sets of data are reanalyzed using microscopic double-folded optical potentials based upon the density-dependent Jeukenne–Lejeune–Mahaux (JLM) effective nucleon–nucleon interaction.

[1]  M. A. Hassanain,et al.  An investigation of α-nucleus elastic scattering , 2014 .

[2]  A. Ibraheem,et al.  An Investigation of 4He+12C and 4He+16O Reactions Using the Cluster Model , 2012 .

[3]  M. A. Hassanain,et al.  Double folding cluster potential forC12+C12elastic scattering , 2008 .

[4]  Y. Sakuragi,et al.  Application of the Jeukenne-Lejeune-Mahaux folding model to {alpha}-nucleus elastic scattering , 2006 .

[5]  S. Das,et al.  Shallow folding potential for 16O + 12C elastic scattering , 2006 .

[6]  S. Das,et al.  Cluster structure of 40,44,48Ca , 2003 .

[7]  M. Sarker,et al.  Cluster structure of 16O , 2003 .

[8]  M. E. Farid Heavy ion double folding cluster optical potentials , 2002 .

[9]  G. S. Hassan,et al.  Analysis of heavy ions elastic scattering using the double folding cluster model , 2001 .

[10]  G. S. Hassan,et al.  α-clustering folding model , 2001 .

[11]  A. Amry,et al.  Elastic scattering analysis of {alpha} and {sup 3} He particles on {sup 12}C and {sup 16}O using a complex folded potential , 1997 .

[12]  M. E. Farid Four-alpha cluster folding model of 16O-ions , 1990 .

[13]  M. E. Farid Folding models for the elastic scattering of 7Li+12C , 1989 .

[14]  A. Hogenbirk,et al.  Double folding analysis of elastic and inelastic alpha scattering from 36S using the JLM effective nucleon-nucleon interaction , 1989 .

[15]  D. N. Basu,et al.  The density dependence and the range of effective projectile-nucleon interaction from optical model analysis , 1983 .

[16]  D. Srivastava Geometries of ion-ion potentals obtained by double-folding density-dependent interactions , 1983 .

[17]  M. E. Farid,et al.  Elastic scattering of 12C ions using the Watanabe superposition model , 1982 .

[18]  H. J. Gils,et al.  Cluster folding model for /sup 12/C(/sup 6/Li,/sup 6/Li) scattering at 156 Mev , 1982 .

[19]  J. Peng,et al.  Nucleus-nucleus total reaction cross sections , 1980 .

[20]  J. Peng,et al.  Evidence for transparency in medium-energy composite-projectile nucleus collisions , 1979 .

[21]  G. R. Satchler,et al.  Folding model potentials from realistic interactions for heavy-ion scattering , 1979 .

[22]  André Lejeune,et al.  Optical-model potential in finite nuclei from Reid's hard core interaction , 1977 .

[23]  B. Buck,et al.  Local potential models for the scattering of complex nuclei , 1977 .

[24]  André Lejeune,et al.  Microscopic calculation of the symmetry and Coulomb components of the complex optical-model potential , 1977 .

[25]  F. Michel α-clustering in the ground state of 40Ca , 1976 .

[26]  B. Buck,et al.  SIMPLE POTENTIAL MODEL FOR CLUSTER STATES IN LIGHT-NUCLEI , 1975 .

[27]  André Lejeune,et al.  Optical-model potential in nuclear matter from Reid's hard core interaction , 1974 .

[28]  D. Srivastava,et al.  The effects of density-dependence and exchange on the equivalent sharp radius of the real proton optical potential , 1974 .