Deep learning control of THz QCLs.

Artificial neural networks are capable of fitting highly non-linear and complex systems. Such complicated systems can be found everywhere in nature, including the non-linear interaction between optical modes in laser resonators. In this work, we demonstrate artificial neural networks trained to model these complex interactions in the cavity of a Quantum Cascade Random Laser. The neural networks are able to predict modulation schemes for desired laser spectra in real-time. This radically novel approach makes it possible to adapt spectra to individual requirements without the need for lengthy and costly simulation and fabrication iterations.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Dmitry K. Polyushkin,et al.  Ultrafast machine vision with 2D material neural network image sensors , 2020, Nature.

[3]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[4]  Q. Hu,et al.  High-power portable terahertz laser systems , 2020 .

[5]  K. Unterrainer,et al.  Scattering strength dependence of terahertz random lasers , 2019, Journal of Applied Physics.

[6]  Sergei K. Turitsyn,et al.  Machine learning and applications in ultrafast photonics , 2020, Nature Photonics.

[7]  Ying Zhang,et al.  Two-Dimensional Multimode Terahertz Random Lasing with Metal Pillars , 2018, ACS Photonics.

[8]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[9]  Ken Perlin,et al.  [Computer Graphics]: Three-Dimensional Graphics and Realism , 2022 .

[10]  H. Hübers,et al.  Wideband, high-resolution terahertz spectroscopy by light-induced frequency tuning of quantum-cascade lasers. , 2019, Optics express.

[11]  Yang Gao,et al.  Optical machine learning with incoherent light and a single-pixel detector , 2019, Optics letters.

[12]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[13]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[14]  Pin Tang,et al.  Predictions of resonant mode characteristics for terahertz quantum cascade lasers with distributed feedback utilizing machine learning. , 2021, Optics express.

[15]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[16]  B. Williams,et al.  Terahertz quantum cascade VECSEL with watt-level output power , 2018, Applied Physics Letters.

[17]  K. Unterrainer,et al.  Terahertz optical machine learning for object recognition , 2020 .

[18]  S. Rotter,et al.  All-optical adaptive control of quantum cascade random lasers , 2019, Nature Communications.

[19]  Sergey Kobtsev,et al.  Machine Learning Methods for Control of Fibre Lasers with Double Gain Nonlinear Loop Mirror , 2019, Scientific Reports.

[20]  Lixing Han,et al.  Effect of dimensionality on the Nelder–Mead simplex method , 2006, Optim. Methods Softw..

[21]  Hongxing He,et al.  Outlier Detection Using Replicator Neural Networks , 2002, DaWaK.

[22]  S. Gigan,et al.  Taming random lasers through active spatial control of the pump. , 2012, Physical review letters.

[23]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[24]  Qing Hu,et al.  Broadband all-electronically tunable MEMS terahertz quantum cascade lasers. , 2014, Optics letters.

[25]  Simone Biasco,et al.  Frequency-tunable continuous-wave random lasers at terahertz frequencies , 2019, Light: Science & Applications.

[26]  Gottfried Strasser,et al.  Random Lasers for Broadband Directional Emission , 2016 .

[27]  Edmund H. Linfield,et al.  Multimode, Aperiodic Terahertz Surface-Emitting Laser Resonators , 2016 .

[28]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[29]  Wei Ma,et al.  Deep learning for the design of photonic structures , 2020, Nature Photonics.

[30]  A. Lee,et al.  Tunable terahertz quantum cascade lasers with external gratings. , 2010, Optics letters.

[31]  M. Semtsiv,et al.  Thermoelectric-cooled terahertz quantum cascade lasers. , 2019, Optics express.

[32]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[33]  R. Terazzi,et al.  Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage , 2009 .

[34]  Joaquim Ciurana,et al.  Modeling pulsed laser micromachining of micro geometries using machine-learning techniques , 2015, J. Intell. Manuf..

[35]  Tarek El-Ghazawi,et al.  Neuromorphic photonics with electro-absorption modulators. , 2018, Optics express.

[36]  B. Williams,et al.  Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL , 2019, Nature Photonics.