The reductive perturbation method and the Korteweg-de Vries hierarchy
暂无分享,去创建一个
Roberto André Kraenkel | R. Kraenkel | José Geraldo Pereira | Miguel Alberto Manna | J. G. Pereira | M. Manna
[1] G. Sandri,et al. A new method of expansion in mathematical physics - I , 1965 .
[2] D. Korteweg,et al. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .
[3] Robert M. Miura,et al. Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .
[4] Y. Kodama,et al. Higher Order Approximation in the Reductive Perturbation Method. I. The Weakly Dispersive System , 1978 .
[5] Alan Jeffrey,et al. Asymptotic methods in nonlinear wave theory , 1982 .
[6] T. Taniuti. Reductive Perturbation Method and Far Fields of Wave Equations (Part I. General Theory) , 1975 .
[7] S. Novikov,et al. Theory of Solitons: The Inverse Scattering Method , 1984 .
[8] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[9] C. S. Gardner,et al. The Korteweg-de Vries equation as a Hamiltonian System , 1971 .
[10] C. S. Gardner,et al. Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .
[11] 角谷 典彦. A. Jeffrey and T. Kawahara: Asymptotic Methods in Nonlinear Wave Theory, Pitman, Boston and London, 1982, x+256ページ, 24×16cm, 11,470円 (Applicable Mathematics Series). , 1983 .