Topological categories related to Fredholm operators: II. The analytical index
暂无分享,去创建一个
[1] M. Prokhorova. From graph to Riesz continuity , 2022, 2202.03337.
[2] N. V. Ivanov. Spectral sections: two proofs of a theorem of Melrose-Piazza , 2021, 2112.04673.
[3] N. V. Ivanov. Topological categories related to Fredholm operators: I. Classifying spaces , 2021, 2111.14313.
[4] N. V. Ivanov. Leray theorems in bounded cohomology theory , 2020, 2012.08038.
[5] M. Atiyah,et al. Twisted K-theory , 2004, math/0407054.
[6] Graeme Segal,et al. Configuration-spaces and iterated loop-spaces , 1973 .
[7] R. Melrose,et al. Families of Dirac operators, boundaries and the $b$-calculus , 1997 .
[8] F. Saibi,et al. private communication , 1969 .
[9] M. Atiyah,et al. Index theory for skew-adjoint fredholm operators , 1969 .
[10] Graeme Segal,et al. Classifying spaces and spectral sequences , 1968 .
[11] Robert T. Seeley,et al. Complex powers of an elliptic operator , 1967 .
[12] N. Kuiper. The homotopy type of the unitary group of Hilbert space , 1965 .
[13] A. Douady,et al. Champs continus d’espaces hilbertiens et de $C^\ast $ -algèbres , 1963 .