Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine-uric acid transporter and an intrinsically misfolded polypeptide.

[1]  Paul Dupree,et al.  The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger , 2014, Fungal genetics and biology : FG & B.

[2]  G. Diallinas Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters , 2014, Front. Pharmacol..

[3]  C. Fishwick,et al.  Molecular mechanism of ligand recognition by membrane transport protein, Mhp1 , 2014, The EMBO journal.

[4]  Benoît Roux,et al.  Conformational dynamics of ligand-dependent alternating access in LeuT , 2014, Nature Structural &Molecular Biology.

[5]  E. Gouaux,et al.  How LeuT shapes our understanding of the mechanisms of sodium‐coupled neurotransmitter transporters , 2014, The Journal of physiology.

[6]  G. Diallinas,et al.  Transport assays in filamentous fungi: kinetic characterization of the UapC purine transporter of Aspergillus nidulans. , 2014, Fungal genetics and biology : FG & B.

[7]  Inna Dubchak,et al.  The genome portal of the Department of Energy Joint Genome Institute: 2014 updates , 2013, Nucleic Acids Res..

[8]  Marek S. Skrzypek,et al.  The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations , 2013, Nucleic Acids Res..

[9]  B. Dujon,et al.  Complete DNA Sequence of Kuraishia capsulata Illustrates Novel Genomic Features among Budding Yeasts (Saccharomycotina) , 2013, Genome biology and evolution.

[10]  G. Diallinas Allopurinol and xanthine use different translocation mechanisms and trajectories in the fungal UapA transporter. , 2013, Biochimie.

[11]  G. Diallinas,et al.  The arrestin‐like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad‐range and specific signals , 2013, Molecular microbiology.

[12]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[13]  S. Liddell,et al.  Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing , 2012, PLoS genetics.

[14]  G. Lambrinidis,et al.  Identification of the Substrate Recognition and Transport Pathway in a Eukaryotic Member of the Nucleobase-Ascorbate Transporter (NAT) Family , 2012, PloS one.

[15]  M. Freeman,et al.  New lives for old: evolution of pseudoenzyme function illustrated by iRhoms , 2012, Nature Reviews Molecular Cell Biology.

[16]  S. Frillingos Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ. , 2012, International journal of biochemistry and molecular biology.

[17]  S. Frillingos,et al.  The Role of Transmembrane Segment TM3 in the Xanthine Permease XanQ of Escherichia coli* , 2011, The Journal of Biological Chemistry.

[18]  E. Mikros,et al.  Mutational analysis and modeling reveal functionally critical residues in transmembrane segments 1 and 3 of the UapA transporter. , 2011, Journal of molecular biology.

[19]  N. Yan,et al.  Structure and mechanism of the uracil transporter UraA , 2011, Nature.

[20]  M. Freeman,et al.  Rhomboid Family Pseudoproteases Use the ER Quality Control Machinery to Regulate Intercellular Signaling , 2011, Cell.

[21]  George Mermelekas,et al.  Cysteine-scanning Analysis of Helices TM8, TM9a, and TM9b and Intervening Loops in the YgfO Xanthine Permease , 2010, The Journal of Biological Chemistry.

[22]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[23]  George Mermelekas,et al.  Purine Substrate Recognition by the Nucleobase-Ascorbate Transporter Signature Motif in the YgfO Xanthine Permease , 2010, The Journal of Biological Chemistry.

[24]  G. Diallinas,et al.  Dynamic elements at both cytoplasmically and extracellularly facing sides of the UapA transporter selectively control the accessibility of substrates to their translocation pathway. , 2010, Journal of molecular biology.

[25]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[26]  G. Diallinas,et al.  Transport‐dependent endocytosis and turnover of a uric acid‐xanthine permease , 2010, Molecular microbiology.

[27]  C. Scazzocchio,et al.  Convergent evolution and orphan genes in the Fur4p‐like family and characterization of a general nucleoside transporter in Aspergillus nidulans , 2009, Molecular microbiology.

[28]  G. Diallinas An Almost-Complete Movie , 2008, Science.

[29]  G. Diallinas,et al.  Specific interdomain synergy in the UapA transporter determines its unique specificity for uric acid among NAT carriers. , 2008, Journal of molecular biology.

[30]  G. Diallinas,et al.  The ubiquitous Nucleobase-Ascorbate Transporter (NAT) family: Lessons from model microbial genetic systems , 2008 .

[31]  G. Diallinas,et al.  Characterization and kinetics of the major purine transporters in Aspergillus fumigatus. , 2008, Fungal genetics and biology : FG & B.

[32]  G. Diallinas,et al.  Fungal nucleobase transporters. , 2007, FEMS microbiology reviews.

[33]  C. Scazzocchio,et al.  Differential physiological and developmental expression of the UapA and AzgA purine transporters in Aspergillus nidulans. , 2007, Fungal genetics and biology : FG & B.

[34]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[35]  G. Diallinas,et al.  A novel-type substrate-selectivity filter and ER-exit determinants in the UapA purine transporter. , 2006, Journal of molecular biology.

[36]  G. Diallinas,et al.  The nucleobase-ascorbate transporter (NAT) signature motif in UapA defines the function of the purine translocation pathway. , 2005, Journal of molecular biology.

[37]  G. Diallinas,et al.  Comparative substrate recognition by bacterial and fungal purine transporters of the NAT/NCS2 family , 2005, Molecular membrane biology.

[38]  G. Marzluf,et al.  Genetic and metabolic regulation of purine base transport in Neurospora crassa , 1976, Molecular and General Genetics MGG.

[39]  A. Karagouni,et al.  A novel improved method for Aspergillus nidulans transformation. , 2003, Journal of microbiological methods.

[40]  A. Karagouni,et al.  Amino acid residues N450 and Q449 are critical for the uptake capacity and specificity of UapA, a prototype of a nucleobase-ascorbate transporter family , 2000, Molecular membrane biology.

[41]  C. Scazzocchio,et al.  Chimeric purine transporters of Aspergillus nidulans define a domain critical for function and specificity conserved in bacterial, plant and metazoan homologues , 1998, The EMBO journal.

[42]  C. Scazzocchio,et al.  Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. , 1993, The Journal of biological chemistry.

[43]  Teri,et al.  Molecular Cloning A Laboratory Manual Second Edition Sambrook , 1989 .

[44]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .