A Fast Chaos-Based Pseudo-Random Bit Generator Using Binary64 Floating-Point Arithmetic

Chaos-based cryptography is widely investigated in recent years, especially in the field of random number generators. The paper describes a novel pseudo-random bit generator (PRBG) based on chaotic logistic maps. Three logistic maps are combined in the algorithmic process, and a block of 32 random bits is produced at each iteration. The binary64 double precision format is used according to the IEEE 754-2008 standard for floating-point arithmetic. This generator provides a considerable improvement of an existing generator in the literature. Rigorous statistical analyses are carefully conducted to evaluate the quality and the robustness of the PRBG. The obtained results showed the relevance of the proposed generator, which is suitable even for real-time applications. Povzetek: V ˇ

[1]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[2]  Dr. Ranjan Bose,et al.  IMPLEMENTING SYMMETRIC CRYPTOGRAPHY USING CHAOS FUNCTIONS , 2002 .

[3]  Jörg Keller,et al.  Period lengths of chaotic pseudo-random number generators , 2007 .

[4]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[5]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[6]  Fuyan Sun,et al.  Cryptographic pseudo-random sequence from the spatial chaotic map , 2009 .

[7]  R. Povinelli,et al.  Analyzing Logistic Map Pseudorandom Number Generators for Periodicity Induced by Finite Precision Floating-Point Representation , 2012 .

[8]  Jacques M. Bahi,et al.  A Pseudo Random Numbers Generator Based on Chaotic Iterations: Application to Watermarking , 2010, WISM.

[9]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[10]  Marco Tomassini,et al.  Generating high-quality random numbers in parallel by cellular automata , 1999, Future Gener. Comput. Syst..

[11]  A. Crisanti,et al.  Predictability in the large: an extension of the concept of Lyapunov exponent , 1996, chao-dyn/9606014.

[12]  Eli Biham,et al.  Differential Cryptanalysis of the Data Encryption Standard , 1993, Springer New York.

[13]  Gonzalo Álvarez,et al.  Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.

[14]  Coskun Bayrak,et al.  A new hybrid nonlinear congruential number generator based on higher functional power of logistic maps , 2009 .

[15]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[16]  Dominique Barchiesi,et al.  Pseudo-random number generator based on mixing of three chaotic maps , 2014, Commun. Nonlinear Sci. Numer. Simul..

[17]  Rajesh Singh,et al.  A study on the effect of shifting on LFSR PRNG , 2012 .

[18]  Xuan Li,et al.  Chaos-based true random number generator using image , 2011, 2011 International Conference on Computer Science and Service System (CSSS).

[19]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[20]  Vinod Patidar,et al.  A Pseudo Random Bit Generator Based on Chaotic Logistic Map and its Statistical Testing , 2009, Informatica.

[21]  Lingfeng Liu,et al.  Pseudorandom sequence generator based on the Chen chaotic system , 2013, Comput. Phys. Commun..

[22]  M. Baptista Cryptography with chaos , 1998 .

[23]  M. François,et al.  Image Encryption Algorithm Based on a Chaotic Iterative Process , 2012 .

[24]  J. M. Bevan,et al.  Rank Correlation Methods , 1949 .

[25]  Vinod Patidar,et al.  Image encryption using chaotic logistic map , 2006, Image Vis. Comput..

[26]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[27]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[28]  Dominique Barchiesi,et al.  A New Pseudo-Random Number Generator Based on Two Chaotic Maps , 2013, Informatica.

[29]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[30]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .