Quantum deniable authentication protocol

The proposed quantum identity authentication schemes only involved authentication between two communicators, but communications with deniability capability are often desired in electronic applications such as online negotiation and electronic voting. In this paper, we proposed a quantum deniable authentication protocol. According to the property of unitary transformation and quantum one-way function, this protocol can provide that only the specified receiver can identify the true source of a given message and the specified receiver cannot prove the source of the message to a third party by a transcript simulation algorithm. Moreover, the quantum key distribution and quantum encryption algorithm guarantee the unconditional security of this scheme. Security analysis results show that this protocol satisfies the basic security requirements of deniable authentication protocol such as completeness and deniability and can withstand the forgery attack, impersonation attack, inter-resend attack.

[1]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[2]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[3]  Moni Naor,et al.  Concurrent zero-knowledge , 1998, STOC '98.

[4]  Yonatan Aumann,et al.  Authentication, enhanced security and error correcting codes , 1998 .

[5]  Yonatan Aumann,et al.  Authentication, Enhanced Security and Error Correcting Codes (Extended Abstract) , 1998, CRYPTO.

[6]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[7]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[8]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[9]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[10]  M. Bourennane,et al.  Authority-based user authentication in quantum key distribution , 2000 .

[11]  Guihua Zeng,et al.  Identity verification in quantum key distribution , 2000 .

[12]  M. Curty,et al.  Quantum authentication of classical messages , 2001, quant-ph/0103122.

[13]  Jian Li,et al.  Quantum key distribution and quantum authentication based on entangled state , 2001, quant-ph/0102058.

[14]  Xiaotie Deng,et al.  Deniable authentication protocols , 2001 .

[15]  Guang-Can Guo,et al.  Quantum secret sharing without entanglement , 2002 .

[16]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[17]  Takashi Mihara,et al.  Quantum identification schemes with entanglements , 2002 .

[18]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[19]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[20]  Zuhua Shao Efficient deniable authentication protocol based on generalized ElGamal signature scheme , 2004, Comput. Stand. Interfaces.

[21]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[22]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[23]  Guihua Zeng,et al.  Cross-center quantum identification scheme based on teleportation and entanglement swapping , 2005 .

[24]  Jian Wang,et al.  Quantum secure direct communication based on order rearrangement of single photons , 2006, quant-ph/0603100.

[25]  Ping Zhou,et al.  Deterministic secure quantum communication without maximally entangled states , 2006 .

[26]  Fuguo Deng,et al.  Circular quantum secret sharing , 2006, quant-ph/0612018.

[27]  周萍,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2007 .

[28]  Gonzalo Alvarez,et al.  Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations , 2006, nlin/0611017.

[29]  Wei-Bin Lee,et al.  A novel deniable authentication protocol using generalized ElGamal signature scheme , 2007, Inf. Sci..

[30]  Tzonelih Hwang,et al.  EPR quantum key distribution protocols with potential 100% qubit efficiency , 2007, IET Inf. Secur..

[31]  Zhou Ping,et al.  Multiparty Quantum Remote Secret Conference , 2007 .

[32]  周萍,et al.  Multiparty Quantum Remote Secret Conference , 2007 .

[33]  Gao Gan,et al.  Quantum Key Distribution Scheme with High Efficiency , 2009 .

[34]  Tzonelih Hwang,et al.  New Efficient Three-Party Quantum Key Distribution Protocols , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Tzonelih Hwang,et al.  THE ENHANCEMENT OF ZHOU et al.'s QUANTUM SECRET SHARING PROTOCOL , 2009 .

[36]  Tian-Yin Wang,et al.  Secure authentication of classical messages with decoherence-free states , 2009 .

[37]  Gan Gao,et al.  An Efficient Multiparty Quantum Secret Sharing Protocol Based on Bell States in the High Dimension Hilbert Space , 2010 .

[38]  Mosayeb Naseri,et al.  SECURE QUANTUM REPORT WITH AUTHENTICATION BASED ON GHZ STATES AND ENTANGLEMENT SWAPPING , 2011 .

[39]  Yang Yi-xian,et al.  Scheme for Cloning a Three-Particle GHZ Class State with Assistance , 2011 .

[40]  Chia-Wei Tsai,et al.  Comment on “Quantum Key Distribution and Quantum Authentication Based on Entangled State” , 2011 .

[41]  Yang Rong-Can,et al.  Atomic GHZ States Prepared in Two Directly Coupled Cavities with Virtual Excitations in One Step , 2011 .

[42]  Ping Zhou,et al.  Multiparty Joint Remote Preparation of an Arbitrary GHZ-Class State via Positive Operator-Valued Measurement , 2012 .

[43]  Chia-Wei Tsai,et al.  Quantum Secret Sharing Based on Quantum Search Algorithm , 2012 .

[44]  Chia-Wei Tsai,et al.  Quantum Secret Sharing Using Symmetric W State , 2012 .

[45]  Ning Li,et al.  Secure quantum report with authentication based on six-particle cluster state and entanglement swapping , 2012, Science China Information Sciences.

[46]  Zhiwei Sun,et al.  Quantum Secret Sharing of Secure Direct Communication Using One-Time Pad , 2012 .

[47]  Yi-you Nie,et al.  Quantum Secure Direct Communication Based on Four-Qubit Cluster States , 2013 .

[48]  Zhao Yu-Jing,et al.  Preparation of N-Qubit GHZ State with a Hybrid Quantum System Based on Nitrogen-Vacancy Centers , 2013 .

[49]  Chao-Hua Yu,et al.  Quantum Secure Direct Communication with Authentication Using Two Nonorthogonal States , 2013 .

[50]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..