Planar multi-patch domain parameterization via patch adjacency graphs

Abstract As a remarkable difference to the existing CAD technology, where shapes are represented by their boundaries, FEM-based isogeometric analysis typically needs a parameterization of the interior of the domain. Due to the strong influence on the accuracy of the analysis, methods for constructing a good parameterization are fundamentally important. The flexibility of single patch representations is often insufficient, especially when more complex geometric shapes have to be represented. Using a multi-patch structure may help to overcome this challenge. In this paper we present a systematic method for exploring the different possible parameterizations of a planar domain by collections of quadrilateral patches. Given a domain, which is represented by a certain number of boundary curves, our aim is to find the optimal multi-patch parameterization with respect to an objective function that captures the parameterization quality. The optimization considers both the location of the control points and the layout of the multi-patch structure. The latter information is captured by pre-computed catalogs of all available multi-patch topologies. Several numerical examples demonstrate the performance of the method.

[1]  Barbara Wohlmuth,et al.  Isogeometric mortar methods , 2014, 1407.8313.

[2]  Angelos Mantzaflaris,et al.  Multipatch Discontinuous Galerkin Isogeometric Analysis , 2015 .

[3]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[4]  Bert Jüttler,et al.  Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines , 2010, Curves and Surfaces.

[5]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[6]  Jens Gravesen,et al.  Planar Parametrization in Isogeometric Analysis , 2012, MMCS.

[7]  Bert Jüttler,et al.  Planar domain parameterization with THB-splines , 2015, Comput. Aided Geom. Des..

[8]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[9]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[10]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[11]  Bert Jüttler,et al.  Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..

[12]  Bhaskar Dasgupta,et al.  Domain Mapping for Volumetric Parameterization using Harmonic Functions , 2013, arXiv.org.

[13]  Ulrich Langer,et al.  Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-IgA equations , 2016, 1601.01808.

[14]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[15]  Marc Noy,et al.  Surveys in Combinatorics 2009: Counting planar graphs and related families of graphs , 2009 .

[16]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[17]  Michael Barton,et al.  Exploring quadrangulations , 2014, TOGS.

[18]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[19]  Martin Ruess,et al.  Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures , 2015 .

[20]  Bert Jüttler,et al.  The Isogeometric Segmentation Pipeline , 2015 .

[21]  Mario Kapl,et al.  Isogeometric segmentation: The case of contractible solids without non-convex edges , 2014, Comput. Aided Des..

[22]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[23]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[24]  Bert Jüttler,et al.  Parameterization of Contractible Domains Using Sequences of Harmonic Maps , 2010, Curves and Surfaces.

[25]  Wenping Wang,et al.  Feature-preserving T-mesh construction using skeleton-based polycubes , 2015, Comput. Aided Des..

[26]  Franck Ledoux,et al.  23rd International Meshing Roundtable (IMR23) Block-Structured Hexahedral Meshes for CAD Models using 3D Frame Fields , 2014 .

[27]  Bert Jüttler,et al.  Isogeometric segmentation. Part II: On the segmentability of contractible solids with non-convex edges , 2014, Graph. Model..

[28]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[29]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[30]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[31]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .