Pseudogap and antiferromagnetic correlations in the hubbard model.

Using the dynamical cluster approximation and quantum Monte Carlo simulations we calculate the single-particle spectra of the Hubbard model with next-nearest neighbor hopping . In the underdoped region, we find that the pseudogap along the zone diagonal in the electron doped systems is due to long-range antiferromagnetic correlations. The physics in the proximity of (0, pi) is dramatically influenced by t' and determined by the short range correlations. The effect t' of on the low-energy angle-resolved photoemission spectroscopy spectra is weak except close to the zone edge. The short range correlations are sufficient to yield a pseudogap signal in the magnetic susceptibility and produce a concomitant gap in the single-particle spectra near (pi, pi/2), but not necessarily at a location in the proximity of the Fermi surface.