Catalytic C3 aza-alkylation of indoles.

The aza-alkylation reaction at indole's C3 position allows the introduction of a differently substituted aminomethyl group, with the formation of a new stereogenic centre. The reaction involves essentially three different partners: an indole, aldehyde and amine. The formation of the reactive iminium species can be catalyzed by metals, Brønsted acids, Lewis acids or organocatalysts. The stereoselective reaction is feasible with satisfactory outcomes. This review summarizes the recent (2000-2019) meaningful papers in which the in-depth study and exploitation of this reactivity are reported.

[1]  Mi Yan,et al.  Indole: A privileged scaffold for the design of anti-cancer agents. , 2019, European journal of medicinal chemistry.

[2]  Harikrishna Erothu,et al.  One‐Pot Three‐Component Synthesis of 3‐Aminoalkyl Indoles Catalyzed by Molecular Iodine , 2019, ChemistrySelect.

[3]  I. Beletskaya,et al.  Enantioselective Copper(II)/Box‐Catalyzed Synthesis of Chiral β3‐Tryptophan Derivatives , 2019, ChemCatChem.

[4]  A. Willis,et al.  1,2-Addition versus homoconjugate addition reactions of indoles and electron-rich arenes to α-cyclopropyl N-acyliminium ions: synthetic and computational studies. , 2019, Organic & biomolecular chemistry.

[5]  Y. Yeung,et al.  Halogen-Bond-Catalyzed Addition of Carbon-Based Nucleophiles to N-Acylimminium Ions. , 2019, Organic letters.

[6]  Zhentao Wang,et al.  Strategic C-C Bond-Forming Dearomatization of Pyridines and Quinolines. , 2019, Organic letters.

[7]  Hong Liu,et al.  Gold‐catalyzed Rapid Construction of Nitrogen‐containing Heterocyclic Compound Library with Scaffold Diversity and Molecular Complexity , 2019, Advanced Synthesis & Catalysis.

[8]  Hong Liu,et al.  Green and Facile Assembly of Diverse Fused N-Heterocycles Using Gold-Catalyzed Cascade Reactions in Water , 2019, Molecules.

[9]  Kamal Kumar,et al.  Cascade reaction based synthetic strategies targeting biologically intriguing indole polycycles. , 2019, Organic & biomolecular chemistry.

[10]  R. Straub,et al.  Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors. , 2018, Journal of medicinal chemistry.

[11]  Z. Luo,et al.  Mannich Reaction of Indole with Cyclic Imines in Water , 2018 .

[12]  Takuya Mochizuki,et al.  Enantioselective Aza-Friedel–Crafts Reaction of Indoles with Ketimines Catalyzed by Chiral Potassium Binaphthyldisulfonates , 2018 .

[13]  J. Sperry,et al.  Mushroom-Derived Indole Alkaloids. , 2017, Journal of natural products.

[14]  Xiangying Tang,et al.  Dual-role of PtCl2 catalysis in the intramolecular cyclization of (hetero)aryl-allenes for the facile construction of substituted 2,3-dihydropyrroles and polyheterocyclic skeletons. , 2017, Chemical communications.

[15]  T. Nielsen,et al.  Scaffold Diversity from N-Acyliminium Ions. , 2017, Chemical reviews.

[16]  Hailong Yan,et al.  Cooperative Cation‐Binding Catalysis as an Efficient Approach for Enantioselective Friedel–Crafts Reaction of Indoles and Pyrrole , 2017 .

[17]  A. Ramli,et al.  Indole Alkaloids from Plants as Potential Leads for Antidepressant Drugs: A Mini Review , 2017, Frontiers in pharmacology.

[18]  S. Mandal,et al.  PdII/AgI-Catalyzed Room-Temperature Reaction of γ-Hydroxy Lactams: Mechanism, Scope, and Antistaphylococcal Activity. , 2017, The Journal of organic chemistry.

[19]  Long-Sheng Wang,et al.  Chiral phosphoric acid catalyzed aza-Friedel-Crafts alkylation of indoles with cyclic aryl α-ketimino esters , 2017 .

[20]  T. Arai,et al.  Catalytic Asymmetric Synthesis of 3-Indolyl Methanamines Using Unprotected Indoles and N-Boc Imines under Basic Conditions. , 2016, Angewandte Chemie.

[21]  F. Behbahani,et al.  Three-Component Synthesis of 3-Aminoalkylindoles using Iron(III) Phosphate , 2016 .

[22]  Marc Y. Stevens,et al.  Microwave-Assisted Branching Cascades: A Route to Diverse 3,4-Dihydroquinazolinone-Embedded Polyheterocyclic Scaffolds. , 2016, Organic letters.

[23]  Mincan Wang,et al.  Synthesis of 3-Indolylglycine Derivatives via Dinuclear Zinc Catalytic Asymmetric Friedel-Crafts Alkylation Reaction. , 2016, The Journal of organic chemistry.

[24]  J. Moran,et al.  Enantioselective and Regiodivergent Functionalization of N-Allylcarbamates by Mechanistically Divergent Multicatalysis. , 2016, Chemistry.

[25]  Wu‐Lin Yang,et al.  Cu(I)-Catalyzed Chemoselective and Stereoselective [3 + 3] Cycloaddition of Azomethine Ylides with 2-Indolylnitroethylenes: Facile Access to Highly Substituted Tetrahydro-γ-Carbolines , 2016 .

[26]  Rui Wang,et al.  Enantioselective Dearomative Arylation of Isoquinolines , 2016 .

[27]  B. Satpati,et al.  Exploration of magnetically separable Ag@AgxNiy core/graded-alloy-shell nanostructures. , 2016, Chemical communications.

[28]  Hiroyuki Nakamura,et al.  Synthesis of 2-Indolyltetrahydroquinolines by Zinc(II)-Catalyzed Intramolecular Hydroarylation-Redox Cross-Dehydrogenative Coupling of N-Propargylanilines with Indoles. , 2016, Angewandte Chemie.

[29]  K. S. Feldman,et al.  Studies on the Synthesis of the Alkaloid (-)-Gilbertine via Indolidene Chemistry. , 2016, The Journal of organic chemistry.

[30]  Hong-min Liu,et al.  Convenient synthesis of antiproliferative 2,3-dihydro-2,3′-bisindoles via dimerization of N-H indole derivatives , 2016 .

[31]  K. Debnath,et al.  Facile one-pot three-component synthesis of diverse 2,3-disubstituted isoindolin-1-ones using ZrO2 nanoparticles as a reusable dual acid–base solid support under solvent-free conditions , 2016 .

[32]  S. Samanta,et al.  Double π‐Bond Isomerization/Friedel–Crafts Reaction Involving γ‐­Amidocronates: Access to γ‐Aryl/Heteroaryl GABA Scaffolds and Dihydropyrido[1,2‐a]indoles , 2016 .

[33]  Ziwei Gao,et al.  Tunable Titanocene Lewis Acid Catalysts for Selective Friedel–Crafts Reaction of Indoles and N‐Sulfonyl­aldimines , 2016 .

[34]  Songxing Zhang,et al.  One‐Step Direct Functionalization of Tetrahydroisoquinolines under Copper and Acid Catalysis , 2015 .

[35]  Jinxing Ye,et al.  Acid-catalyzed efficient Friedel–Crafts reaction of indoles with N-Boc aminals , 2015 .

[36]  Jagatheeswaran Kothandapani,et al.  Magnetically separable sulfonic acid catalysed one-pot synthesis of diverse indole derivatives , 2015 .

[37]  T. Opatz,et al.  Marine Indole Alkaloids , 2015, Marine drugs.

[38]  H. Hamana,et al.  A new methodology for functionalization at the 3-position of indoles by a combination of boron Lewis acid with nitriles. , 2015, Chemical & pharmaceutical bulletin.

[39]  Thomas E Nielsen,et al.  Synthesis of 1,4,5 trisubstituted γ-lactams via a 3-component cascade reaction. , 2015, Bioorganic & medicinal chemistry.

[40]  Surisa Tuengpanya,et al.  Bi(OTf)3-Catalyzed One-Step Catalytic Synthesis of N-Boc or N-Cbz Protected α-Branched Amines. , 2015, The Journal of organic chemistry.

[41]  Stuart W. Prescott,et al.  RGO/ZnO Nanocomposite: An Efficient, Sustainable, Heterogeneous, Amphiphilic Catalyst for Synthesis of 3-Substituted Indoles in Water , 2015 .

[42]  Y. Nageswar,et al.  β-Cyclodextrin catalyzed synthesis of substituted indoles in aqueous medium , 2014 .

[43]  H. Eshghi,et al.  One-pot Solvent Free Synthesis of Some Tert-indolylmethane Amine Derivatives by Fe(HSO4)3 as a Recyclable Catalyst , 2014 .

[44]  G. Brahmachari,et al.  One‐Pot Synthesis of 3‐[(N‐Alkylanilino)(aryl)methyl]indoles via a Transition Metal Assisted Three‐Component Condensation at Room Temperature , 2014 .

[45]  Yi Pan,et al.  Asymmetric Friedel-Crafts reactions of N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines: general access to enantiomerically pure indoles containing a 1-amino-2,2,2-trifluoroethyl group. , 2014, The Journal of organic chemistry.

[46]  D. Schneider,et al.  1‐(1H‐Indol‐3‐yl)ethanamine Derivatives as Potent Staphylococcus aureus NorA Efflux Pump Inhibitors , 2014, ChemMedChem.

[47]  J. Poisson,et al.  Concise Preparation of Optically Active Heteroaryl α‐(Hydroxyamino) Esters , 2014 .

[48]  M. A. Pericàs,et al.  Enantioselective continuous-flow production of 3-indolylmethanamines mediated by an immobilized phosphoric acid catalyst. , 2014, Chemistry.

[49]  Stéphane P. Roche,et al.  Autocatalytic one pot orchestration for the synthesis of α-arylated, α-amino esters. , 2014, Chemical communications.

[50]  R. I. Kureshy,et al.  Asymmetric Friedel–Crafts addition of indoles to N-sulfonyl aldimines catalyzed by Cu(II) chiral amino alcohol based Schiff base complexes , 2014 .

[51]  R. Ghorbani‐Vaghei,et al.  Solid-state synthesis of novel 3-substituted indoles , 2014 .

[52]  S. Takizawa,et al.  Vanadium-catalyzed enantioselective Friedel-Crafts-type reactions. , 2013, Dalton transactions.

[53]  M. Bandini Electrophilicity: the "dark-side" of indole chemistry. , 2013, Organic & biomolecular chemistry.

[54]  R. Nagarajan,et al.  An efficient synthesis of indol-3-yl benzonaphthyridines via copper(II) triflate-catalyzed heteroannulation , 2013 .

[55]  J. Waser,et al.  Catalytic Friedel-Crafts reaction of aminocyclopropanes. , 2013, Organic letters.

[56]  K. P. Kumar,et al.  Cellulose–Sulfonic Acid: An Efficient, Recyclable, and Biodegradable Solid Acid Catalyst for the Synthesis of 3-Aminoalkylindoles , 2013 .

[57]  Chung Hyeok Kim,et al.  Biomedical Importance of Indoles , 2013, Molecules.

[58]  Shun-Yi Wang,et al.  Recyclable NaHSO4 catalyzed alkylation of tert-enamides with indoles or amines in water: facile construction of pharmaceutically analogous bis-alkaloid scaffolds , 2013 .

[59]  S. Bhusare,et al.  A convenient one-pot three component synthesis of 3-aminoalkylated indoles catalyzed by 3-chlorophenylboronic acid , 2013 .

[60]  P. N. Chatterjee,et al.  Heterobimetallic Ir–Sn catalysis: aza-Friedel–Crafts reaction of N-sulfonyl aldimines , 2013 .

[61]  Long He,et al.  Chiral Phosphoric Acid‐Catalyzed Enantioselective Aza‐Friedel–Crafts Alkylation of Indoles with γ‐Hydroxy‐γ‐lactams , 2013 .

[62]  A. Kovrov,et al.  Synthesis and spectral features of new 1-alkyl-5-(indol-2(3)-yl)pyrrolidin-2-ones , 2013, Chemistry of Heterocyclic Compounds.

[63]  Maneesh K. Gupta,et al.  Micelle promoted multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction in water , 2013 .

[64]  Kun-Liang Wu,et al.  Double axially chiral bisphosphorylimides catalyzed highly enantioselective and efficient Friedel-Crafts reaction of indoles with imines. , 2013, Chemistry.

[65]  B. Sridhar,et al.  Gold-catalyzed domino cycloisomerization/Pictet-Spengler reaction of 2-(4-aminobut-1-yn-1-yl)anilines with aldehydes: synthesis of tetrahydropyrido[4,3-b]indole scaffolds. , 2012, The Journal of organic chemistry.

[66]  Shun-Yi Wang,et al.  Synthesis of Indeno[1,2‐b]indole Derivatives through One‐Pot Sequential or Two‐Step Iodine‐Catalyzed C–O Activation and Palladium‐Catalyzed C–H Functionalization , 2012 .

[67]  X. Leng,et al.  Chiral counteranion-directed silver-catalyzed asymmetric synthesis of 1,2-dihydroisoquinolines by Friedel–Crafts alkylation reactions , 2012 .

[68]  Zhiwei Miao,et al.  Asymmetric aza-Friedel–Crafts reaction of indoles induced by O-pivaloylated d-galactosylamine as the chiral auxiliary , 2012 .

[69]  S. Palaniappan,et al.  PANI-HBF4: A Reusable Polymer-Based Solid Acid Catalyst for Three-Component, One-Pot Synthesis of 3-Substituted Amino Methyl Indoles Under Solvent-Free Conditions , 2012 .

[70]  Maneesh K. Gupta,et al.  L-Proline catalysed multicomponent synthesis of 3-amino alkylated indolesvia a Mannich-type reaction under solvent-free conditions , 2012 .

[71]  Xiuling Han,et al.  Pd(OAc)2‐Catalyzed Tandem Reactions for the Synthesis of Indol‐3‐yl Substituted 1H‐Isochromenes and 1,2‐Dihydroisoquinolines , 2011 .

[72]  Lei Liu,et al.  Highly enantioselective Friedel–Crafts reaction of indoles with N-sulfonyl aldimines catalyzed by heteroarylidene malonate-type bis(oxazoline) copper(II) complexes , 2011 .

[73]  S. K. Panday Advances in the chemistry of proline and its derivatives: an excellent amino acid with versatile applications in asymmetric synthesis , 2011 .

[74]  E. Jacobsen,et al.  Thiourea-catalyzed enantioselective iso-Pictet-Spengler reactions. , 2011, Organic letters.

[75]  S. Tian,et al.  Catalytic asymmetric Pictet-Spengler-type reaction for the synthesis of optically active indolo[3,4-cd][1]benzazepines. , 2011, Organic letters.

[76]  W. Chan,et al.  Chiral sulfonimide as a Brønsted acid organocatalyst for asymmetric Friedel-Crafts alkylation of indoles with imines. , 2011, The Journal of organic chemistry.

[77]  S. Ji,et al.  Direct alkylation of indoles and amines by tert-enamides: facile access to pharmaceutically active 2-oxo-1-pyrrolidine analogues. , 2011, Organic & biomolecular chemistry.

[78]  M. Terada Enantioselective Carbon-Carbon Bond Forming Reactions Catalyzed by Chiral Phosphoric Acid Catalysts , 2011 .

[79]  K. Parang,et al.  3-substitued indoles: one-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities. , 2011, Bioorganic & medicinal chemistry letters.

[80]  Xing-Wang Wang,et al.  Dinuclear zinc catalyzed asymmetric Friedel-Crafts amidoalkylation of indoles with aryl aldimines. , 2011, Organic & biomolecular chemistry.

[81]  G. Lushington,et al.  Solution-phase parallel synthesis of a diverse library of 1,2-dihydroisoquinolines. , 2011, ACS combinatorial science.

[82]  Tian-Xing Wu,et al.  FeCl3-promoted alkylation of indoles by enamides. , 2011, Organic & biomolecular chemistry.

[83]  Yanguang Wang,et al.  SPINOL-derived phosphoric acids: synthesis and application in enantioselective Friedel-Crafts reaction of indoles with imines. , 2010, The Journal of organic chemistry.

[84]  S. Ji,et al.  Ferric(III) Nitrate: An Efficient Catalyst for the Regioselective Friedel–Crafts Reactions of Indoles and tert-Enamides in Water , 2010 .

[85]  L. Yadav,et al.  Bromodimethylsulfonium bromide (BDMS)-catalyzed multicomponent synthesis of 3-aminoalkylated indoles , 2010 .

[86]  S. Sharma,et al.  Water‐Accelerated Cationic π‐(7‐endo) Cyclisation: Application to Indole‐Based Peri‐Annulated Polyheterocycles , 2010 .

[87]  W. Xiao,et al.  Convenient Synthesis of Tetrahydro‐γ‐carbolines and Tetrahydroquinolines through a Chemo‐ and Regioselectivity Switch by a Brønsted Acid Catalyzed, One‐Pot, Multicomponent Reaction , 2010 .

[88]  Boyu Li,et al.  InCl(3)-catalyzed asymmetric aza-Friedel-Crafts reaction of indoles with imines generated from O-pivaloylated beta-D-galactosylamine. , 2010, Carbohydrate research.

[89]  J. Zhao,et al.  Squaramide-catalyzed enantioselective Friedel-Crafts reaction of indoles with imines. , 2010, Chemical communications.

[90]  L. Overman,et al.  Total synthesis of (+/-)- and (-)-actinophyllic acid. , 2010, Journal of the American Chemical Society.

[91]  J. Lehmann,et al.  Dopamine receptor ligands. Part 18: (1) modification of the structural skeleton of indolobenzazecine-type dopamine receptor antagonists. , 2010, Journal of medicinal chemistry.

[92]  J. N. Kumar,et al.  A Facile Synthesis of 3-[(N-Alkylanilino)(aryl)methyl]indolesUsing TCT , 2010 .

[93]  G. Gribble Heterocyclic Scaffolds II , 2010 .

[94]  E. Jacobsen,et al.  Enantioselective, thiourea-catalyzed intermolecular addition of indoles to cyclic N-acyl iminium ions. , 2009, Angewandte Chemie.

[95]  P. Srihari,et al.  One-pot three-component coupling reaction: solvent-free synthesis of novel 3-substituted indoles catalyzed by PMA-SiO2 , 2009 .

[96]  Jung-Hyun Park,et al.  Multicomponent synthesis of alpha-branched amides. , 2009, Organic letters.

[97]  M. David,et al.  Heterolignans: Stereoselective Synthesis of an 11‐Amino Analog of Azaelliptitoxin , 2008 .

[98]  T. Konakahara,et al.  A practical approach to non-natural or N-unsubstituted α-arylglycine derivatives: Hf(OTf)4-doped Me3SiCl system-catalyzed aminomethylation of electron-rich arenes with a new type of N,O-acetal , 2008 .

[99]  D. Prajapati,et al.  The facile and efficient three-component one-pot Mannich-type reaction of indoles catalyzed by In(OTf)3 under microwave irradiations , 2008 .

[100]  M. Terada,et al.  Asymmetric Direct Mannich Reaction Catalyzed by Chiral Bronsted Acid via Activation of Enecarbamate as an Aliphatic Imine Alternative , 2008 .

[101]  J. Yadav,et al.  Indium(III) chloride catalyzed addition of indoles to activated aza-aromatic systems , 2008 .

[102]  Q. Dang,et al.  Synthesis of novel pyrimidine fused 8-membered heterocycles via iminium ion cyclization reactions. , 2008, The Journal of organic chemistry.

[103]  T. Konakahara,et al.  Hf(OTf)4-Doped Me3SiCl-Catalyzed Aminomethylation of Arenes with N,O-Acetals: Facile Approach to Non-Natural Aromatic Amino Acid Precursors , 2007 .

[104]  M. Terada,et al.  Chiral Phosphoric Acid‐Catalyzed Enantioselective Aza‐Friedel–Crafts Reaction of Indoles , 2007 .

[105]  M. O'Connor,et al.  Aza-Nazarov reaction and the role of superelectrophiles. , 2007, Organic letters.

[106]  J. Perman,et al.  The highly enantioselective addition of indoles to N-acyl imines with use of a chiral phosphoric acid catalyst. , 2007, Organic letters.

[107]  Q. Kang,et al.  Highly enantioselective Friedel-Crafts reaction of indoles with imines by a chiral phosphoric acid. , 2007, Journal of the American Chemical Society.

[108]  M. Terada,et al.  Enantioselective friedel-crafts reaction of electron-rich alkenes catalyzed by chiral Brønsted acid. , 2007, Journal of the American Chemical Society.

[109]  S. Shirakawa,et al.  Carboxylic acid catalyzed three-component aza-Friedel-Crafts reactions in water for the synthesis of 3-substituted indoles. , 2006, Organic letters.

[110]  S. Connon Chiral phosphoric acids: powerful organocatalysts for asymmetric addition reactions to imines. , 2006, Angewandte Chemie.

[111]  Jun Song,et al.  Asymmetric Friedel-crafts reaction of indoles with imines by an organic catalyst. , 2006, Journal of the American Chemical Society.

[112]  Qi‐Lin Zhou,et al.  Asymmetric Friedel-Crafts addition of indoles to N-sulfonyl aldimines: a simple approach to optically active 3-indolyl-methanamine derivatives. , 2006, Organic letters.

[113]  J. Esquivias,et al.  A copper(II)-catalyzed aza-Friedel-Crafts reaction of N-(2-pyridyl)sulfonyl aldimines: synthesis of unsymmetrical diaryl amines and triaryl methanes. , 2006, Angewandte Chemie.

[114]  J. Yadav,et al.  First Example of Functionalization of Activated Quinolines by Indoles Using CeCl3·7H2O , 2005 .

[115]  P. Jaisankar,et al.  First Indium Trichloride Catalyzed Self-Addition of Indoles: One pot Synthesis of Indolylindolines. , 2005 .

[116]  M. Hamann,et al.  Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases , 2005, Life Sciences.

[117]  E. Molins,et al.  Enantioselective formal synthesis of uleine alkaloids from phenylglycinol-derived bicyclic lactams. , 2004, Chemical communications.

[118]  C. Escolano,et al.  Stereoselective α-amidoalkylation reactions of phenylglycinol-derived bicyclic lactams , 2003 .

[119]  Wei Zhang,et al.  Ytterbium triflate catalyzed electrophilic substitution of indoles: the synthesis of unnatural tryptophan derivatives , 2002 .

[120]  Katsuya Kato,et al.  Diastereoselective Friedel–Crafts reaction of α-trifluoromethyl imines derived from chiral amines , 2001 .

[121]  Katsuya Kato,et al.  Convenient preparation of 1-(indol-3-yl)-2,2,2-trifluoroethylamines via Friedel–Crafts reaction of α-trifluoroacetaldehyde hemiaminal , 2001 .

[122]  M. Johannsen An enantioselective synthesis of heteroaromatic N-tosyl α-amino acids , 1999 .

[123]  J. Bosch,et al.  A short synthesis of N(a)-methylervitsine. Reactivity of the intermediate 1,4-dihydropyridine towards electrophiles , 1995 .

[124]  C. Cass,et al.  Differential activity of vincristine and vinblastine against cultured cells. , 1984, Cancer research.

[125]  R. Sundberg The chemistry of indoles , 1970 .