Exact solution of the van der Waals model in the critical region

The celebrated van der Waals model describes simple fluids in the thermodynamic limit and predicts the existence of a critical point associated to the gas-liquid phase transition. However the behaviour of critical isotherms according to the equation of state, where a gas-liquid phase transition occurs, significantly departs from experimental observations. The correct critical isotherms are heuristically re-established via the Maxwell equal areas rule. A long standing open problem in mean field theory is concerned with the analytic description of van der Waals isotherms for a finite size system that is consistent, in the thermodynamic limit, with the Maxwell prescription. Inspired by the theory of nonlinear conservation laws, we propose a novel mean field approach, based on statistical mechanics, that allows to calculate the van der Waals partition function for a system of large but finite number of particles $N$. Our partition function naturally extends to the whole space of thermodynamic variables, reproduces, in the thermodynamic limit $N\to \infty$, the classical results outside the critical region and automatically encodes Maxwell's prescription. We show that isothermal curves evolve in the space of thermodynamic variables like nonlinear breaking waves and the criticality is explained as the mechanism of formation of a classical hydrodynamic shock.

[1]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[2]  Barry Simon,et al.  The P(φ) 2 Euclidean Quantum Field Theory as Classical Statistical Mechanics , 1975 .

[3]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[4]  R. Mahajan,et al.  The Landau theory of phase transitions: A mechanical analog , 2009 .

[5]  A. Moro Shock dynamics of phase diagrams , 2013, 1307.7512.

[6]  van Aernout Enter Statistical Mechanics, A Short Treatise , 2000 .

[7]  B. Widom,et al.  Equation of State in the Neighborhood of the Critical Point , 1965 .

[8]  A. Barra,et al.  On quantum and relativistic mechanical analogues in mean-field spin models , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  J. Brankov,et al.  On model spin Hamiltonians including long-range ferromagnetic interaction , 1974 .

[10]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[11]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[12]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[13]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[14]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  R. Griffiths Thermodynamic Functions for Fluids and Ferromagnets near the Critical Point , 1967 .

[17]  Joël Wagner,et al.  On the “Mean Field” Interpretation of Burgers' Equation , 2004 .

[18]  Giorgio Parisi,et al.  Mean-field theory of hard sphere glasses and jamming , 2008, 0802.2180.

[19]  A. Barra,et al.  A mechanical approach to mean field spin models , 2008, 0812.1978.

[20]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[21]  M. Kardar Statistical physics of fields , 2007 .

[22]  A. Arsie,et al.  Integrable viscous conservation laws , 2013, 1301.0950.

[23]  O. Penrose,et al.  Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition , 1966 .

[24]  F. Zamponi Glass transitions: Quantum glass forging , 2011 .

[25]  G. Parisi,et al.  Statistical Field Theory , 1988 .

[26]  J. Rud Nielsen,et al.  Elementary Statistical Physics. , 1959 .

[27]  V. Akila,et al.  Information , 2001, The Lancet.

[28]  J. Brankov,et al.  On the description of the phase transition in the Husimi-Temperley model , 1983 .

[29]  N. Kampen,et al.  CONDENSATION OF A CLASSICAL GAS WITH LONG-RANGE ATTRACTION , 1964 .

[30]  A. Moro,et al.  Thermodynamic phase transitions and shock singularities , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .