UvA-DARE ( Digital Academic Repository ) Polarizable Force Fields for CO 2 and CH 4 Adsorption in M-MOF-74

The family of M-MOF-74, with M = Co, Cr, Cu, Fe, Mg, Mn, Ni, Ti, V, and Zn, provides opportunities for numerous energy related gas separation applications. The pore structure of M-MOF-74 exhibits a high internal surface area and an exceptionally large adsorption capacity. The chemical environment of the adsorbate molecule in M-MOF-74 can be tuned by exchanging the metal ion incorporated in the structure. To optimize materials for a given separation process, insights into how the choice of the metal ion affects the interaction strength with adsorbate molecules and how to model these interactions are essential. Here, we quantitatively highlight the importance of polarization by comparing the proposed polarizable force field to orbital interaction energies from DFT calculations. Adsorption isotherms and heats of adsorption are computed for CO2, CH4, and their mixtures in M-MOF-74 with all 10 metal ions. The results are compared to experimental data, and to previous simulation results using nonpolarizable force fields derived from quantum mechanics. To the best of our knowledge, the developed polarizable force field is the only one so far trying to cover such a large set of possible metal ions. For the majority of metal ions, our simulations are in good agreement with experiments, demonstrating the effectiveness of our polarizable potential and the transferability of the adopted approach.

[1]  J. Gomes,et al.  A Transferable Model for Adsorption in MOFs with Unsaturated Metal Sites , 2017 .

[2]  Li-Chiang Lin,et al.  Investigating polarization effects of CO2 adsorption in MgMOF-74 , 2016, J. Comput. Sci..

[3]  Yongjin Lee,et al.  Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks , 2016 .

[4]  O. Farha,et al.  CO2 Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba) , 2016 .

[5]  R. Snurr,et al.  RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials , 2016 .

[6]  Wendy L. Queen,et al.  Ab Initio Derived Force Fields for Predicting CO2 Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu) , 2015 .

[7]  Peyman Z. Moghadam,et al.  Pore Size Dependence of Adsorption and Separation of Thiophene/Benzene Mixtures in Zeolites , 2015 .

[8]  Louis Vanduyfhuys,et al.  QuickFF: A program for a quick and easy derivation of force fields for metal‐organic frameworks from ab initio input , 2015, J. Comput. Chem..

[9]  C. Cramer,et al.  Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. , 2015, Chemical reviews.

[10]  Y. Chabal,et al.  Competitive Coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74 (M = Mg, Co, Ni): The Role of Hydrogen Bonding , 2015, 1503.04721.

[11]  Kuang Yu,et al.  Transferable next-generation force fields from simple liquids to complex materials. , 2015, Accounts of chemical research.

[12]  B. Smit,et al.  Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design , 2015 .

[13]  Li-Chiang Lin,et al.  Evaluating different classes of porous materials for carbon capture , 2014 .

[14]  Michael James,et al.  Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) , 2014 .

[15]  T. Vlugt,et al.  Enantioselective adsorption of ibuprofen and lysine in metal-organic frameworks. , 2014, Chemical communications.

[16]  Yamil J. Colón,et al.  High-throughput computational screening of metal-organic frameworks. , 2014, Chemical Society reviews.

[17]  D. Truhlar,et al.  Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. , 2014, Nature chemistry.

[18]  B. Smit,et al.  CO2 Adsorption in Fe2(dobdc): A Classical Force Field Parameterized from Quantum Mechanical Calculations , 2014 .

[19]  B. Mandal,et al.  Adsorption Characteristics of Metal–Organic Frameworks Containing Coordinatively Unsaturated Metal Sites: Effect of Metal Cations and Adsorbate Properties , 2014 .

[20]  B. Smit,et al.  Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal-Organic Frameworks. , 2014, Journal of chemical theory and computation.

[21]  Randall Q. Snurr,et al.  High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature , 2014 .

[22]  B. Smit,et al.  Design of a metal-organic framework with enhanced back bonding for the separation of N2 and CH4 , 2014 .

[23]  B. Smit,et al.  Understanding Trends in CO2 Adsorption in Metal-Organic Frameworks with Open-Metal Sites. , 2014, The journal of physical chemistry letters.

[24]  J. Eckert,et al.  Simulations of hydrogen sorption in rht-MOF-1: Identifying the binding sites through explicit polarization and quantum rotation calculations , 2014 .

[25]  D. Sholl,et al.  Recent developments in first-principles force fields for molecules in nanoporous materials , 2014 .

[26]  B. Smit,et al.  Probing adsorption interactions in metal-organic frameworks using X-ray spectroscopy. , 2013, Journal of the American Chemical Society.

[27]  Ariana Torres-Knoop,et al.  On the inner workings of Monte Carlo codes , 2013 .

[28]  A. Yazaydin,et al.  A combined experimental and quantum chemical study of CO2 adsorption in the metal–organic framework CPO-27 with different metals , 2013 .

[29]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[30]  D. Vos,et al.  Understanding Hydrocarbon Adsorption in the UiO-66 Metal–Organic Framework: Separation of (Un)saturated Linear, Branched, Cyclic Adsorbates, Including Stereoisomers , 2013 .

[31]  B. Smit,et al.  Understanding CO2 dynamics in metal-organic frameworks with open metal sites. , 2013, Angewandte Chemie.

[32]  D. Sholl,et al.  Prediction of Water Adsorption in Copper-Based Metal–Organic Frameworks Using Force Fields Derived from Dispersion-Corrected DFT Calculations , 2013 .

[33]  J. Long,et al.  Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) , 2013 .

[34]  D. Sholl,et al.  Adsorption and Diffusion of Small Alcohols in Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-90 , 2013 .

[35]  Sergey N. Maximoff,et al.  Ab initio carbon capture in open-site metal-organic frameworks. , 2012, Nature chemistry.

[36]  R. Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[37]  C. Morrison,et al.  Improving Predictions of Gas Adsorption in Metal–Organic Frameworks with Coordinatively Unsaturated Metal Sites: Model Potentials, ab initio Parameterization, and GCMC Simulations , 2012 .

[38]  J. Long,et al.  CO2 dynamics in a metal-organic framework with open metal sites. , 2012, Journal of the American Chemical Society.

[39]  F. Paesani,et al.  The effects of electronic polarization on water adsorption in metal-organic frameworks: H2O in MIL-53(Cr). , 2012, The Journal of chemical physics.

[40]  Richard L. Martin,et al.  Large-scale computational screening of zeolites for ethane/ethene separation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[41]  David S Sholl,et al.  Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[42]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[43]  E. Maginn,et al.  Thermal and Transport Properties of Six Ionic Liquids: An Experimental and Molecular Dynamics Study , 2012 .

[44]  B. Smit,et al.  CO2 capture by metal-organic frameworks with van der Waals density functionals. , 2012, The journal of physical chemistry. A.

[45]  D. Sholl,et al.  Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations , 2012 .

[46]  Hans W. Horn,et al.  QM/MM-Based Fitting of Atomic Polarizabilities for Use in Condensed-Phase Biomolecular Simulation. , 2012, Journal of chemical theory and computation.

[47]  Richard L. Martin,et al.  High-Throughput Characterization of Porous Materials Using Graphics Processing Units. , 2012, Journal of chemical theory and computation.

[48]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[49]  S. Han,et al.  Tuning Metal-Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution. , 2012, The journal of physical chemistry letters.

[50]  Sankar Nair,et al.  Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point charges. , 2012, Journal of the American Chemical Society.

[51]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[52]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[53]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[54]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[55]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[56]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[57]  S. Sachdeva,et al.  Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges , 2012 .

[58]  O. Yaghi,et al.  Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network , 2011 .

[59]  P. Nachtigall,et al.  Accurate Prediction of Methane Adsorption in a Metal–Organic Framework with Unsaturated Metal Sites by Direct Implementation of an ab Initio Derived Potential Energy Surface in GCMC Simulation , 2011 .

[60]  Wenbin Lin,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[61]  S. Deng,et al.  Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[62]  J. Long,et al.  A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. , 2011, Journal of the American Chemical Society.

[63]  Craig M. Brown,et al.  Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. , 2011, Journal of the American Chemical Society.

[64]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[65]  R. Krishna,et al.  Investigating the potential of MgMOF-74 membranes for CO2 capture , 2011 .

[66]  W. Zhou,et al.  Carbon capture in metal–organic frameworks—a comparative study , 2011 .

[67]  B. Smit,et al.  Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. , 2011, Journal of the American Chemical Society.

[68]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[69]  P. Couvreur,et al.  BioMOFs: metal-organic frameworks for biological and medical applications. , 2010, Angewandte Chemie.

[70]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[71]  D. Dubbeldam,et al.  Analysis of the ITQ-12 Zeolite Performance in Propane−Propylene Separations Using a Combination of Experiments and Molecular Simulations , 2010 .

[72]  Wei Zhou,et al.  Adsorption Sites and Binding Nature of CO2 in Prototypical Metal−Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study , 2010 .

[73]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[74]  Wenbin Lin,et al.  Metal-organic frameworks as potential drug carriers. , 2010, Current opinion in chemical biology.

[75]  Alexander D. MacKerell,et al.  Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers , 2010, Journal of molecular modeling.

[76]  A. Simon‐Masseron,et al.  Adsorption of CO(2), CH(4), and N(2) on zeolitic imidazolate frameworks: experiments and simulations. , 2010, Chemistry.

[77]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[78]  H. Furukawa,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[79]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[80]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[81]  Pedro E. M. Lopes,et al.  Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications , 2009, Theoretical chemistry accounts.

[82]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[83]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[84]  S. Nguyen,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[85]  J. Long,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[86]  U. Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[87]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[88]  Wei Zhou,et al.  High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. , 2009, Journal of the American Chemical Society.

[89]  David S. Sholl,et al.  Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials , 2009 .

[90]  C. Lamberti,et al.  CO Adsorption on CPO-27-Ni Coordination Polymer: Spectroscopic Features and Interaction Energy , 2009 .

[91]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[92]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[93]  T. Vlugt,et al.  Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. , 2008, Journal of chemical theory and computation.

[94]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[95]  C. Rosenzweig,et al.  Attributing physical and biological impacts to anthropogenic climate change , 2008, Nature.

[96]  Wei Zhou,et al.  Nature and Tunability of Enhanced Hydrogen Binding in Metal-Organic Frameworks with Exposed Transition Metal Sites , 2008 .

[97]  Arieh Warshel,et al.  Polarizable Force Fields:  History, Test Cases, and Prospects. , 2007, Journal of chemical theory and computation.

[98]  H. Hasse,et al.  Unlike Lennard-Jones parameters for vapor-liquid equilibria , 2007, 0904.4436.

[99]  E. Baerends,et al.  Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .

[100]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[101]  Haibo Yu,et al.  Accounting for polarization in molecular simulation , 2005, Comput. Phys. Commun..

[102]  E Beerdsen,et al.  Force field parametrization through fitting on inflection points in isotherms. , 2004, Physical review letters.

[103]  S Pacala,et al.  Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies , 2004, Science.

[104]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[105]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[106]  C. Rao,et al.  Metal carboxylates with open architectures. , 2004, Angewandte Chemie.

[107]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[108]  J. Eckert,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[109]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[110]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[111]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[112]  M. Panhuis,et al.  Distributed polarizability of the water dimer: Field-induced charge transfer along the hydrogen bond , 2001 .

[113]  Yaoquan Tu,et al.  The electronic properties of water molecules in water clusters and liquid water , 2000 .

[114]  J. Ilja Siepmann,et al.  Adiabatic Nuclear and Electronic Sampling Monte Carlo Simulations in the Gibbs Ensemble: Application to Polarizable Force Fields for Water , 2000 .

[115]  A. Fuchs,et al.  Computational Study of p-Xylene/m-Xylene Mixtures Adsorbed in NaY Zeolite , 1998 .

[116]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[117]  R. Pellenq,et al.  Intermolecular Potential Function for the Physical Adsorption of Rare Gases in Silicalite , 1994 .

[118]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[119]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[120]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[121]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[122]  P. Kollman,et al.  Monte Carlo simulation of aqueous solutions of Li+ and Na+ using many‐body potentials. Coordination numbers, ion solvation enthalpies, and the relative free energy of solvation , 1990 .

[123]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[124]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[125]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[126]  A. Rauk,et al.  Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method , 1979 .

[127]  A. Rauk,et al.  A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method , 1979 .

[128]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[129]  T. Heine,et al.  Extension of the Universal Force Field for Metal-Organic Frameworks. , 2016, Journal of chemical theory and computation.

[130]  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis 1 , 2016 .

[131]  B. Smit,et al.  Cooperative insertion of CO 2 in diamine-appended metal-organic frameworks , 2015 .

[132]  Emppu Salonen,et al.  Polarizable force fields. , 2013, Methods in molecular biology.

[133]  Jayme L. Dahlin,et al.  Atomistic Simulations of CO 2 and N 2 Diffusion in Silica Zeolites : The Impact of Pore Size and Shape , 2008 .

[134]  S. Schiavon,et al.  Climate Change 2007: Impacts, Adaptation and Vulnerability. , 2007 .

[135]  Banglin Chen,et al.  High H2 adsorption in a microporous metal-organic framework with open metal sites. , 2005, Angewandte Chemie.

[136]  P. Ekins Carbon Capture and Sequestration , 1999 .

[137]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .