Constructing near spanning trees with few local inspections

Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. Motivated by several recent studies of local graph algorithms, we consider the following variant of this problem. Let G be a connected bounded-degree graph. Given an edge $e$ in $G$ we would like to decide whether $e$ belongs to a connected subgraph $G'$ consisting of $(1+\epsilon)n$ edges (for a prespecified constant $\epsilon >0$), where the decision for different edges should be consistent with the same subgraph $G'$. Can this task be performed by inspecting only a {\em constant} number of edges in $G$? Our main results are: (1) We show that if every $t$-vertex subgraph of $G$ has expansion $1/(\log t)^{1+o(1)}$ then one can (deterministically) construct a sparse spanning subgraph $G'$ of $G$ using few inspections. To this end we analyze a "local" version of a famous minimum-weight spanning tree algorithm. (2) We show that the above expansion requirement is sharp even when allowing randomization. To this end we construct a family of $3$-regular graphs of high girth, in which every $t$-vertex subgraph has expansion $1/(\log t)^{1-o(1)}$.

[1]  Vahab S. Mirrokni,et al.  Local Computation of PageRank Contributions , 2007, Internet Math..

[2]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[3]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[4]  Shay Kutten,et al.  Fast Distributed Construction of Small k-Dominating Sets and Applications , 1998, J. Algorithms.

[5]  Bernard Chazelle,et al.  Approximating the Minimum Spanning Tree Weight in Sublinear Time , 2001, ICALP.

[6]  Zeyuan Allen Zhu,et al.  Flow-Based Algorithms for Local Graph Clustering , 2013, SODA.

[7]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[8]  RonDana,et al.  Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms , 2007 .

[9]  Ronitt Rubinfeld,et al.  Local Algorithms for Sparse Spanning Graphs , 2014, APPROX-RANDOM.

[10]  Moni Naor,et al.  What Can be Computed Locally? , 1995, SIAM J. Comput..

[11]  Ronitt Rubinfeld,et al.  A Simple Online Competitive Adaptation of Lempel-Ziv Compression with Efficient Random Access Support , 2013, 2013 Data Compression Conference.

[12]  András A. Benczúr,et al.  To randomize or not to randomize: space optimal summaries for hyperlink analysis , 2006, WWW '06.

[13]  David Peleg,et al.  A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction , 2000, SIAM J. Comput..

[14]  Dana Ron,et al.  On Approximating the Minimum Vertex Cover in Sublinear Time and the Connection to Distributed Algorithms , 2007, Electron. Colloquium Comput. Complex..

[15]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[16]  Dana Ron,et al.  Distance Approximation in Bounded-Degree and General Sparse Graphs , 2006, APPROX-RANDOM.

[17]  Bernard Chazelle,et al.  Property-Preserving Data Reconstruction , 2004, Algorithmica.

[18]  Luca Trevisan,et al.  Pseudorandom generators without the XOR Lemma (extended abstract) , 1999, STOC '99.

[19]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[20]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[21]  Michael E. Saks,et al.  Local Monotonicity Reconstruction , 2010, SIAM J. Comput..

[22]  Yuval Peres,et al.  Noise Tolerance of Expanders and Sublinear Expander Reconstruction , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Ronitt Rubinfeld,et al.  Fast Local Computation Algorithms , 2011, ICS.

[24]  Artur Czumaj,et al.  Testing Hereditary Properties of Nonexpanding Bounded-Degree Graphs , 2009, SIAM J. Comput..

[25]  Silvio Lattanzi,et al.  A Local Algorithm for Finding Well-Connected Clusters , 2013, ICML.

[26]  Bernard Chazelle,et al.  Online geometric reconstruction , 2006, SCG '06.

[27]  Dana Ron,et al.  Approximating the distance to properties in bounded-degree and general sparse graphs , 2009, TALG.

[28]  Seth Pettie Distributed algorithms for ultrasparse spanners and linear size skeletons , 2008, PODC '08.

[29]  Ronitt Rubinfeld,et al.  Local Reconstructors and Tolerant Testers for Connectivity and Diameter , 2012, APPROX-RANDOM.

[30]  Sofya Raskhodnikova,et al.  Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2013, SIAM J. Comput..

[31]  Yuichi Yoshida,et al.  An improved constant-time approximation algorithm for maximum~matchings , 2009, STOC '09.

[32]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[33]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[34]  Krzysztof Onak,et al.  Constant-Time Approximation Algorithms via Local Improvements , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[35]  David A. Bader,et al.  A fast, parallel spanning tree algorithm for symmetric multiprocessors , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[36]  Krzysztof Onak,et al.  Local Graph Partitions for Approximation and Testing , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[37]  Alain J. Mayer,et al.  Local Computations on Static and Dynamic Graphs (Preliminary Version). , 1995 .

[38]  Ronitt Rubinfeld,et al.  Local Algorithms for Sparse Spanning Graphs , 2014, Algorithmica.

[39]  M. Kaufmann What Can Be Computed Locally ? , 2003 .

[40]  Sofya Raskhodnikova,et al.  Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[41]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[42]  Pavel Berkhin,et al.  Bookmark-Coloring Algorithm for Personalized PageRank Computing , 2006, Internet Math..

[43]  Yishay Mansour,et al.  Converting Online Algorithms to Local Computation Algorithms , 2012, ICALP.

[44]  Moni Naor,et al.  Local computations on static and dynamic graphs , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[45]  Yishay Mansour,et al.  A Local Computation Approximation Scheme to Maximum Matching , 2013, APPROX-RANDOM.

[46]  Zvika Brakerski Local Property Restoring , 2008 .

[47]  Asaf Shapira,et al.  Decomposing a graph into expanding subgraphs , 2015, Random Struct. Algorithms.

[48]  Yuval Peres,et al.  Finding sparse cuts locally using evolving sets , 2008, STOC '09.

[49]  Noga Alon,et al.  Space-efficient local computation algorithms , 2011, SODA.