Dark matter from hot big bang black holes

If the temperature of the hot thermal plasma in the Early Universe was within a few orders of magnitude of the Planck scale $M_{\rm Pl}$, then the hoop conjecture predicts the formation of microscopic black holes from particle collisions in the plasma. Although these evaporated instantly, they would have left behind a relic abundance of all stable degrees of freedom which couple to gravity. Here we show that, upon minimal assumptions of a high reheat temperature and semiclassical black hole dynamics, this process could have produced the relic abundance of dark matter observed today for a particle mass anywhere in the range of $100~\mathrm{keV} \lesssim m_{dm}<M_{\rm Pl}$, though it could be subdominant to graviton-mediated freeze-in above $m_{dm} \sim$ MeV. The production mechanism does not rely on any additional assumptions about non-gravitational dark matter-Standard Model interaction.

[1]  A. Chaudhuri,et al.  Dark matter production from two evaporating PBH distributions , 2023, Physical Review D.

[2]  D. Marfatia,et al.  Boosted dark matter from primordial black holes produced in a first-order phase transition , 2022, Journal of High Energy Physics.

[3]  Y. Perez-Gonzalez,et al.  Evaporation of primordial black holes in the early Universe: Mass and spin distributions , 2022, Physical Review D.

[4]  M. Lewicki,et al.  Distinct signatures of spinning PBH domination and evaporation: doubly peaked gravitational waves, dark relics and CMB complementarity , 2022, Journal of High Energy Physics.

[5]  D. Borah,et al.  Gravitational wave signatures of a PBH-generated baryon-dark matter coincidence , 2022, Physical Review D.

[6]  E. Speranza,et al.  Freezing-in gravitational waves , 2022, Physical Review D.

[7]  L. Visinelli,et al.  The interplay between the dark matter axion and primordial black holes , 2022, Journal of Cosmology and Astroparticle Physics.

[8]  T. Kitabayashi Primordial black holes and mirror dark matter , 2022, International Journal of Modern Physics A.

[9]  Y. Perez-Gonzalez,et al.  Redshift effects in particle production from Kerr primordial black holes , 2022, Physical Review D.

[10]  D. Borah,et al.  Cogenesis of Baryon asymmetry and gravitational dark matter from primordial black holes , 2022, Journal of Cosmology and Astroparticle Physics.

[11]  T. Kitabayashi Primordial black holes and dark matter mass spectrum , 2022, Progress of Theoretical and Experimental Physics.

[12]  Bing Zhang,et al.  Dark fluxes from accreting black holes through several mechanisms , 2022, The European Physical Journal C.

[13]  A. Vincent,et al.  Primordial black hole dark matter in the context of extra dimensions , 2022, Physical Review D.

[14]  K. Olive,et al.  Gravitational portals in the early Universe , 2021, Physical Review D.

[15]  F. Urban,et al.  Testing super heavy dark matter from primordial black holes with gravitational waves , 2021, Journal of Cosmology and Astroparticle Physics.

[16]  D. Borah,et al.  Non-thermal origin of asymmetric dark matter from inflaton and primordial black holes , 2021, Journal of Cosmology and Astroparticle Physics.

[17]  S. Profumo,et al.  Gravitational baryogenesis and dark matter from light black holes , 2021, Journal of Cosmology and Astroparticle Physics.

[18]  J. March-Russell,et al.  Evaporating primordial black holes, the string axiverse, and hot dark radiation , 2021, 2110.13602.

[19]  K. Sinha,et al.  Asymmetric reheating by primordial black holes , 2021, Physical Review D.

[20]  A. Arbey,et al.  Physics beyond the standard model with BlackHawk v2.0 , 2021, The European Physical Journal C.

[21]  R. B. Barreiro,et al.  Planck 2018 results , 2021, Astronomy & Astrophysics.

[22]  A. Mirizzi,et al.  Axion-like particles from primordial black holes shining through the Universe , 2021, Journal of Cosmology and Astroparticle Physics.

[23]  Y. Perez-Gonzalez,et al.  Primordial black hole evaporation and dark matter production. II. Interplay with the freeze-in or freeze-out mechanism , 2021, Physical Review D.

[24]  Y. Perez-Gonzalez,et al.  Primordial black hole evaporation and dark matter production. I. Solely Hawking radiation , 2021, Physical Review D.

[25]  A. Thamm,et al.  Probing the particle spectrum of nature with evaporating black holes , 2021, SciPost Physics.

[26]  A. Arbey,et al.  Precision calculation of dark radiation from spinning primordial black holes and early matter-dominated eras , 2021, Physical Review D.

[27]  I. Masina Dark Matter and Dark Radiation from Evaporating Kerr Primordial Black Holes , 2021, Gravitation and Cosmology.

[28]  M. Khlopov,et al.  Production and evaporation of micro black holes as a link between mirror universes , 2021, 2102.03028.

[29]  T. Kitabayashi Primordial Black Holes and Scotogenic dark matter , 2021, International Journal of Modern Physics A.

[30]  I. Masina,et al.  Bounds on warm dark matter from Schwarzschild primordial black holes , 2020, The European Physical Journal Plus.

[31]  N. Bernal,et al.  Dark matter in the time of primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[32]  A. Ringwald,et al.  Gravitational waves as a big bang thermometer , 2020, Journal of Cosmology and Astroparticle Physics.

[33]  N. Bernal,et al.  Gravitational dark matter production: Primordial black holes and UV freeze-in , 2020, Physics Letters B.

[34]  N. Bernal,et al.  Self-interacting dark matter from primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[35]  D. Hooper,et al.  GUT baryogenesis with primordial black holes , 2020, 2010.01134.

[36]  Barmak Shams Es Haghi,et al.  The Effects of Primordial Black Holes on Dark Matter Models , 2020, 2009.02424.

[37]  Bing Zhang,et al.  Dark Fluxes from Accreting Black Holes and Direct Detections , 2020, 2009.02315.

[38]  J. Bramante,et al.  Gravitational waves from dark sectors, oscillating inflatons, and mass boosted dark matter , 2020, Journal of Cosmology and Astroparticle Physics.

[39]  D. Hooper,et al.  Constraints on primordial black holes from big bang nucleosynthesis revisited , 2020, 2006.03608.

[40]  D. C. Hooper,et al.  Non-cold dark matter from primordial black hole evaporation , 2020, Journal of Cosmology and Astroparticle Physics.

[41]  M. Laine,et al.  Gravitational wave background from Standard Model physics: complete leading order , 2020, Journal of High Energy Physics.

[42]  I. Masina Dark matter and dark radiation from evaporating primordial black holes , 2020, The European Physical Journal Plus.

[43]  D. Hooper,et al.  Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe. , 2020, 2004.00618.

[44]  A. Chaudhuri,et al.  PBH Evaporation, Baryon Asymmetry, and Dark Matter , 2020, Journal of Experimental and Theoretical Physics.

[45]  A. Vincent,et al.  Signatures of microscopic black holes and extra dimensions at future neutrino telescopes , 2019, 1912.06656.

[46]  A. Vincent,et al.  Discovery and Spectroscopy of Dark Matter and Dark Sectors with Microscopic Black Holes at Next Generation Colliders. , 2019, Physical review letters.

[47]  A. Barrau,et al.  Dark matter as Planck relics without too exotic hypotheses , 2019, Physical Review D.

[48]  Christian I. Johnson,et al.  Direct detection of primordial black hole relics as dark matter , 2019, Journal of Cosmology and Astroparticle Physics.

[49]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[50]  A. Arbey,et al.  BlackHawk: a public code for calculating the Hawking evaporation spectra of any black hole distribution , 2019, The European Physical Journal C.

[51]  G. Tringas,et al.  Primordial black hole remnants as dark matter produced in thermal, matter, and runaway-quintessence postinflationary scenarios , 2019, Physical Review D.

[52]  D. Hooper,et al.  Dark radiation and superheavy dark matter from black hole domination , 2019, Journal of High Energy Physics.

[53]  S. Profumo,et al.  Melanopogenesis: dark matter of (almost) any mass and baryonic matter from the evaporation of primordial black holes weighing a ton (or less) , 2018, Journal of Cosmology and Astroparticle Physics.

[54]  A. Boveia,et al.  Dark Matter Searches at Colliders , 2018, Annual Review of Nuclear and Particle Science.

[55]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[56]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[57]  J. March-Russell,et al.  Black hole genesis of dark matter , 2017, 1712.07664.

[58]  J. Dent,et al.  Nonthermal production of dark matter from primordial black holes , 2017, 1711.10511.

[59]  Yong Tang,et al.  On thermal gravitational contribution to particle production and dark matter , 2017, 1708.05138.

[60]  N. Palanque-Delabrouille,et al.  Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100 , 2017, 1702.03314.

[61]  M. Lisanti Lectures on Dark Matter Physics , 2016, 1603.03797.

[62]  B. Carr,et al.  Sub-Planckian black holes and the Generalized Uncertainty Principle , 2015, Journal of High Energy Physics.

[63]  M. Laine,et al.  Gravitational wave background from Standard Model physics: qualitative features , 2015, 1504.02569.

[64]  Pisin Chen,et al.  Black Hole Remnants and the Information Loss Paradox , 2014, 1412.8366.

[65]  M. Kawasaki,et al.  Baryon asymmetry, dark matter, and density perturbation from primordial black holes , 2014, 1401.1909.

[66]  C. Issever,et al.  BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension , 2007, 0711.3012.

[67]  Dejan Stojković,et al.  Quantum radiation from quantum gravitational collapse , 2007, gr-qc/0701096.

[68]  Tommer Wizansky,et al.  Microscopic Primordial Black Holes and Extra Dimensions , 2006, hep-ph/0611091.

[69]  L. Krauss,et al.  Observation of Incipient Black Holes and the Information Loss Problem , 2006, gr-qc/0609024.

[70]  D. Wands,et al.  Curvature and isocurvature perturbations from two-field inflation in a slow-roll expansion , 2006, astro-ph/0605679.

[71]  C. Vafa,et al.  Tensor modes from a primordial Hagedorn phase of string cosmology. , 2006, Physical review letters.

[72]  V. Tikhomirov,et al.  How particle collisions increase the rate of accretion from the cosmological background onto primordial black holes in braneworld cosmology , 2005, astro-ph/0510212.

[73]  Katsuhiko Sato,et al.  Sub-GeV Galactic cosmic-ray antiprotons from PBHs in the Randall-Sundrum braneworld , 2004 .

[74]  A. Barrau,et al.  Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe , 2004, astro-ph/0406621.

[75]  Katsuhiko Sato,et al.  Constraints on the mass spectrum of primordial black holes and braneworld parameters from the high-energy diffuse photon background , 2003, astro-ph/0309170.

[76]  P. Steinhardt,et al.  Cosmic gravitational-wave background in a cyclic universe , 2003, hep-th/0307170.

[77]  A. Liddle,et al.  Primordial black holes in braneworld cosmologies: Accretion after formation , 2002, astro-ph/0208299.

[78]  A. Majumdar,et al.  Domination of black hole accretion in brane cosmology. , 2002, Physical review letters.

[79]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[80]  N. Bell,et al.  Mirror matter and primordial black holes , 1998, astro-ph/9812301.

[81]  G. Matsas,et al.  Dark matter: the top of the iceberg? , 1998, hep-ph/9810456.

[82]  V. Kuzmin,et al.  Matter creation via vacuum fluctuations in the early Universe and observed ultrahigh energy cosmic ray events , 1998, hep-ph/9809547.

[83]  E. Kolb,et al.  Superheavy dark matter , 1998, hep-ph/9802238.

[84]  Y. Aharonov,et al.  THE UNITARITY PUZZLE AND PLANCK MASS STABLE PARTICLES , 1987 .

[85]  Timothy Clark,et al.  σ‐Holes , 2012 .

[86]  S. Hawking Particle creation by black holes , 1975 .

[87]  K. Thorne Nonspherical Gravitational Collapse--A Short Review , 1972 .

[88]  M. Garny,et al.  ournal of C osmology and A stroparticle hysics J Theory and phenomenology of Planckian interacting massive particles as dark matter , 2022 .