Anyonic tight-binding models of parafermions and of fractionalized fermions

Parafermions are emergent quasi-particles which generalize Majorana fermions and possess intriguing anyonic properties. The theoretical investigation of effective models hosting them is gaining considerable importance in view of present-day condensed-matter realizations where they have been predicted to appear. Here we study the simplest number-conserving model of particle-like Fock parafermions, namely a one-dimensional tight-binding model. By means of numerical simulations based on exact diagonalization and on the density-matrix renormalization group, we prove that this quadratic model is nonintegrable and displays bound states in the spectrum, due to its peculiar anyonic properties. Moreover, we discuss its many-body physics, characterizing anyonic correlation functions and discussing the underlying Luttinger-liquid theory at low energies. In the case when Fock parafermions behave as fractionalized fermions, we are able to unveil interesting similarities with two counter-propagating edge modes of two neighboring Laughlin states at filling 1/3.

[1]  D. Averin,et al.  Correlation functions of one-dimensional Lieb–Liniger anyons , 2007, 0707.4520.

[2]  Construction of modular branching functions from Bethe's equations in the 3-state Potts chain , 1992, hep-th/9210129.

[3]  Luis Santos,et al.  Anyon Hubbard Model in One-Dimensional Optical Lattices. , 2015, Physical review letters.

[4]  Ovidiu I. Pâţu,et al.  Correlation functions and momentum distribution of one-dimensional hard-core anyons in optical lattices , 2014, 1409.2321.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  X. Qi,et al.  Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems , 2013, 1302.2673.

[7]  G. Kells,et al.  Parafermionic clock models and quantum resonance , 2017, 1701.05270.

[8]  M. Cheng Superconducting Proximity Effect on the Edge of Fractional Topological Insulators , 2012, 1204.6084.

[9]  Thermodynamics of the 3-state Potts Spin chain , 1992, hep-th/9210146.

[10]  N. Regnault,et al.  Parafermionic phases with symmetry breaking and topological order , 2015, 1506.03455.

[11]  Matteo Carrega,et al.  Energy transport in an integrable parafermionic chain via generalized hydrodynamics , 2018, Physical Review B.

[12]  Jason Alicea,et al.  Exotic non-Abelian anyons from conventional fractional quantum Hall states , 2012, Nature Communications.

[13]  D. Ferraro,et al.  Multiple quasiparticle Hall spectroscopy investigated with a resonant detector , 2014, 1402.6488.

[14]  Wang An-min,et al.  Limiting Case of 1D Delta Anyon Model , 2008 .

[15]  Y. Hao Ground-state properties of hard-core anyons in a harmonic potential , 2016, 1604.00458.

[16]  Hitesh J. Changlani,et al.  Phase diagram of the Z 3 parafermionic chain with chiral interactions , 2015, 1502.05049.

[17]  Wen,et al.  Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. , 1990, Physical review. B, Condensed matter.

[18]  P. Fendley Parafermionic edge zero modes in Zn-invariant spin chains , 2012, 1209.0472.

[19]  G. Müller,et al.  Introduction to the Bethe ansatz I , 1997 .

[20]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[21]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[22]  J. Alicea,et al.  Fermionized parafermions and symmetry-enriched Majorana modes , 2018, Physical Review B.

[23]  P. Calabrese,et al.  One-particle density matrix and momentum distribution function of one-dimensional anyon gases , 2008, 0802.1913.

[24]  T. Quella,et al.  Topological and symmetry broken phases of ZN parafermions in one dimension , 2013, 1303.5587.

[25]  Matthias Troyer,et al.  Collective states of interacting anyons, edge states, and the nucleation of topological liquids. , 2008, Physical review letters.

[26]  Ian McCulloch,et al.  Statistically induced phase transitions and anyons in 1D optical lattices. , 2010, Nature communications.

[27]  Gil Refael,et al.  Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states , 2012, 1204.5733.

[28]  FATEEV-ZAMOLODCHIKOV SPIN CHAIN: EXCITATION SPECTRUM, COMPLETENESS AND THERMODYNAMICS , 1993, hep-th/9310133.

[29]  D. Averin,et al.  One-dimensional impenetrable anyons in thermal equilibrium: III. Large distance asymptotics of the space correlations , 2009, 0904.1835.

[30]  A. Vaezi,et al.  Fractional topological superconductor with fractionalized Majorana fermions , 2012, 1204.6245.

[31]  E. Cobanera Modeling electron fractionalization with unconventional Fock spaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  B. V. Heck,et al.  Topological phases in two-dimensional arrays of parafermionic zero modes , 2013, 1302.4560.

[34]  D. Averin,et al.  One-dimensional impenetrable anyons in thermal equilibrium: IV. Large time and distance asymptotic behavior of the correlation functions , 2009, 0912.3633.

[35]  T. Hughes,et al.  Parafermionic Wires at the Interface of Chiral Topological States. , 2016, Physical review letters.

[36]  V. Korepin,et al.  Quantum phase transition in a multicomponent anyonic Lieb-Liniger model , 2012, 1204.4149.

[37]  P. Calabrese,et al.  One-body reduced density matrix of trapped impenetrable anyons in one dimension , 2016, 1605.00838.

[38]  Guang-ming Zhang,et al.  Matrix product states for topological phases with parafermions , 2017, 1703.01800.

[39]  Fermionic long-range correlations realized by particles obeying deformed statistics , 2000, cond-mat/0007081.

[40]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[41]  M. Dalmonte,et al.  Nontopological parafermions in a one-dimensional fermionic model with even multiplet pairing , 2018, Physical Review B.

[42]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[43]  Z_{3} Parafermionic Zero Modes without Andreev Backscattering from the 2/3 Fractional Quantum Hall State. , 2016, Physical review letters.

[44]  A. Chang Chiral Luttinger liquids at the fractional quantum Hall edge , 2003 .

[45]  Giorgio Biasiol,et al.  Toward Quantum Hall Effect in a Josephson Junction , 2018, physica status solidi (RRL) - Rapid Research Letters.

[46]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[47]  A. Pelster,et al.  Ground-state properties of anyons in a one-dimensional lattice , 2015, 1509.01888.

[48]  D. Loss,et al.  Floquet Majorana fermions and parafermions in driven Rashba nanowires , 2016, 1608.08143.

[49]  P. Calabrese,et al.  Junctions of anyonic Luttinger wires , 2008, 0808.2719.

[50]  Xiao-Gang Wen,et al.  Topological orders and edge excitations in fractional quantum hall states , 1995, cond-mat/9506066.

[51]  L. Kadanoff,et al.  Disorder variables and para-fermions in two-dimensional statistical mechanics , 1980 .

[52]  Ady Stern,et al.  Anyons and the quantum Hall effect - a pedagogical review , 2007, 0711.4697.

[53]  G. Ortiz,et al.  Fock Parafermions and Self-Dual Representations of the Braid Group , 2013, 1307.6214.

[54]  A. Trombettoni,et al.  Deviations from off-diagonal long-range order in one-dimensional quantum systems , 2018, EPL (Europhysics Letters).

[55]  Maissam Barkeshli,et al.  Theory of defects in Abelian topological states , 2013, 1305.7203.

[56]  M. Burrello,et al.  Dyonic zero-energy modes , 2018, Physical Review B.

[57]  K. West,et al.  Parafermion supporting platform based on spin transitions in the fractional quantum Hall effect regime , 2017, 1709.07928.

[58]  Jason Alicea,et al.  Topological Phases with Parafermions: Theory and Blueprints , 2015, 1504.02476.

[59]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[60]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[61]  M. Lukin,et al.  Numerical study of the chiral Z3 quantum phase transition in one spatial dimension , 2018, Physical Review A.

[62]  D. Loss,et al.  Time-Reversal Invariant Parafermions in Interacting Rashba Nanowires , 2013, 1312.1998.

[63]  D. Huse,et al.  Collective states of interacting Fibonacci anyons. , 2008, Physical review letters.

[64]  A. Yacoby,et al.  Kramers pairs of Majorana fermions and parafermions in fractional topological insulators , 2014, 1403.4125.

[65]  R. Bullough,et al.  A q-deformed completely integrable Bose gas model , 1992 .

[66]  Exact solution of generalized Schulz–Shastry type models , 2000, cond-mat/0003099.

[67]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[68]  Exact Solution of Double δ Function Bose Gas through an Interacting Anyon Gas , 1998, hep-th/9811247.

[69]  D. Cabra,et al.  Entanglement properties and momentum distributions of hard-core anyons on a ring , 2006, cond-mat/0610402.

[70]  Frank Wilczek,et al.  Magnetic flux, angular momentum, and statistics , 1982 .

[71]  Matthias Troyer,et al.  Interacting anyons in topological quantum liquids: the golden chain. , 2007, Physical review letters.

[72]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[73]  D. Ferraro,et al.  Non-Abelian BF theory for 2 + 1 dimensional topological states of matter , 2011, 1106.4641.

[74]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[75]  Maissam Barkeshli,et al.  Twist defects and projective non-Abelian braiding statistics , 2012, 1208.4834.

[76]  Vladimir E. Korepin,et al.  One-dimensional impenetrable anyons in thermal equilibrium: I. Anyonic generalization of Lenard's formula , 2008, 0801.4397.

[77]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[78]  B. Rosenow,et al.  Particle-hole symmetry and the Pfaffian state. , 2007, Physical review letters.

[79]  N. Lindner,et al.  Parafermionic conformal field theory on the lattice , 2014, 1406.0846.

[80]  A. Milsted,et al.  Commensurate and incommensurate states of topological quantum matter , 2014, 1407.1046.

[81]  Wang An-min,et al.  Statistical Interaction Term of One-Dimensional Anyon Models , 2010 .

[82]  J. Silva-Valencia,et al.  Three-body-interaction effects on the ground state of one-dimensional anyons , 2017, 1702.04412.

[83]  Critical points of the anyon-Hubbard model , 2016, 1604.02466.

[84]  Yi-Zhuang You,et al.  Projective non-Abelian statistics of dislocation defects in a Z N rotor model , 2012, 1204.0113.

[85]  D. Loss,et al.  Parafermions in an interacting nanowire bundle. , 2013, Physical review letters.

[86]  T. Meng,et al.  Z4 parafermions in one-dimensional fermionic lattices , 2018, Physical Review B.

[87]  E. Berg,et al.  Topological phases in gapped edges of fractionalized systems , 2013, 1303.2194.

[88]  R. Moessner,et al.  Parafermion chain with 2 pi/k Floquet edge modes , 2016, 1603.00095.