[Functional imaging of tumors. Part 1].

Most advances in conventional diagnostic imaging techniques have focused on improving the spatial resolution and speed of acquisition of images or on new contrast agents. However, tumors are extremely complex biological models with a series of characteristics like hypoxia, metabolism, cellularity, angiogenesis, and functionality of the lymph nodes that are very important in oncology but cannot be adequately studied with these diagnostic imaging methods. In this article, we discuss the possible contributions of different functional imaging techniques based on computed tomography, magnetic

[1]  L Martí-Bonmatí,et al.  [Receptors and markers: toward a science of imaging through hybridization]. , 2007, Radiologia.

[2]  D. Sahani,et al.  Body perfusion CT: technique, clinical applications, and advances. , 2009, Radiologic clinics of North America.

[3]  David J Collins,et al.  Technology Insight: water diffusion MRI—a potential new biomarker of response to cancer therapy , 2008, Nature Clinical Practice Oncology.

[4]  Peter R Luijten,et al.  ADC measurements of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. , 2010, European journal of radiology.

[5]  Dow-Mu Koh,et al.  Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. , 2007, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[6]  James M Provenzale,et al.  Imaging of angiogenesis: clinical techniques and novel imaging methods. , 2007, AJR. American journal of roentgenology.

[7]  C. Harvey,et al.  Imaging of tumour therapy responses by dynamic CT. , 1999, European journal of radiology.

[8]  C. Kuhl,et al.  Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? , 1999, Radiology.

[9]  Gabriel P. Krestin,et al.  Contrast‐Enhanced Endorectal Coil MRI in Local Staging of Prostate Carcinoma , 1995, Journal of computer assisted tomography.

[10]  N. Holalkere,et al.  Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. , 2008, The oncologist.

[11]  Baris Turkbey,et al.  Imaging of tumor angiogenesis: functional or targeted? , 2009, AJR. American journal of roentgenology.

[12]  Clare Allen,et al.  Dynamic contrast enhanced MRI in prostate cancer. , 2007, European journal of radiology.

[13]  Evis Sala,et al.  Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. , 2007, The Lancet. Oncology.

[14]  Zhuang-Wei Xiao,et al.  Peripheral pulmonary nodules: Relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression , 2008, BMC Cancer.

[15]  N Karssemeijer,et al.  Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging. , 1996, Radiology.

[16]  D. Collins,et al.  Diffusion-weighted MRI in the body: applications and challenges in oncology. , 2007, AJR. American journal of roentgenology.

[17]  V. Goh,et al.  Imaging tumor angiogenesis: functional assessment using MDCT or MRI? , 2006, Abdominal Imaging.

[18]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[19]  Katsuhiro Nasu,et al.  Advances in breast MRI: diffusion-weighted imaging of the breast , 2008, Breast cancer.

[20]  G Brix,et al.  MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. , 1994, Magnetic resonance imaging clinics of North America.

[21]  Søren M Bentzen,et al.  Theragnostic imaging for radiation oncology: dose-painting by numbers. , 2005, The Lancet. Oncology.

[22]  Joaquim Barceló,et al.  Resonancia magnética de todo el cuerpo con técnica de difusión (PET virtual) para el cribado de las metástasis óseas , 2007 .

[23]  A R Padhani,et al.  Functional MRI for anticancer therapy assessment. , 2002, European journal of cancer.

[24]  N. Weidner,et al.  Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow , 1998, The Journal of pathology.

[25]  Gordon Rustin,et al.  Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review. , 2009, Radiographics : a review publication of the Radiological Society of North America, Inc.

[26]  C. Ganter,et al.  Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique , 2008, European Radiology.

[27]  Ernst Klotz,et al.  Lung cancer perfusion at multi-detector row CT: reproducibility of whole tumor quantitative measurements. , 2006, Radiology.

[28]  A. Padhani,et al.  Imaging tumour angiogenesis , 2005, Cancer imaging : the official publication of the International Cancer Imaging Society.

[29]  J O Barentsz,et al.  Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. , 2009, Cancer treatment reviews.

[30]  Zi-Ping Li,et al.  Tumor angiogenesis and dynamic CT in colorectal carcinoma: radiologic-pathologic correlation. , 2005, World journal of gastroenterology.

[31]  Abass Alavi,et al.  Functional Imaging of Cancer with Emphasis on Molecular Techniques , 2007, CA: a cancer journal for clinicians.

[32]  A R Padhani,et al.  Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. , 2001, Clinical radiology.

[33]  D. Dearnaley,et al.  Correlation of diffusion-weighted MRI with whole mount radical prostatectomy specimens. , 2008, The British journal of radiology.

[34]  R. Alonzi,et al.  Functional imaging in clinical oncology: magnetic resonance imaging- and computerised tomography-based techniques. , 2006, Clinical oncology (Royal College of Radiologists (Great Britain)).

[35]  R Sinnatamby,et al.  In vivo assessment of neovascularization of liver metastases using perfusion CT. , 1998, The British journal of radiology.

[36]  D J Collins,et al.  Dynamic contrast‐enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis , 2006, The British journal of surgery.

[37]  Vicky Goh,et al.  Functional imaging of colorectal cancer angiogenesis. , 2007, The Lancet. Oncology.

[38]  R. Low,et al.  Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings--a feasibility study. , 2009, AJR. American journal of roentgenology.

[39]  Yu Wang,et al.  Dynamic CT Evaluation of Tumor Vascularity in Renal Cell Carcinoma. , 2006, AJR. American journal of roentgenology.

[40]  Maximilian F. Reiser,et al.  Whole-body MRI for the staging and follow-up of patients with metastasis , 2009 .

[41]  Mostafa Atri,et al.  New technologies and directed agents for applications of cancer imaging. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[42]  L. Martí-Bonmatí,et al.  Los receptores y los marcadores: hacia la Ciencia de la Imagen a través de las hibridaciones , 2007 .

[43]  Sukru Mehmet Erturk,et al.  High-B-value diffusion-weighted MRI in colorectal cancer. , 2006, AJR. American journal of roentgenology.

[44]  Y. Kitazume,et al.  Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? , 2008, AJR. American journal of roentgenology.

[45]  Jeffrey W. Clark,et al.  Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[46]  J R Thornbury,et al.  Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. , 1997, Radiology.

[47]  D. Balvay,et al.  Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment , 2006, Abdominal Imaging.

[48]  Michael B Sharpe,et al.  Image-guided radiotherapy: rationale, benefits, and limitations. , 2006, The Lancet. Oncology.

[49]  P.-F. Liu,et al.  MRI of the uterus, uterine cervix, and vagina: diagnostic performance of dynamic contrast-enhanced fast multiplanar gradient-echo imaging in comparison with fast spin-echo T2-weighted pulse imaging , 1998, European Radiology.

[50]  N. Hylton Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[51]  Mauricio Castillo,et al.  Diffusion-weighted magnetic resonance imaging. , 2002, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[52]  Kevin Harrington,et al.  An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. , 2009, International journal of radiation oncology, biology, physics.

[53]  Hiroshi Iino,et al.  High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. , 2007, AJR. American journal of roentgenology.

[54]  Steve Halligan,et al.  Colorectal tumor vascularity: quantitative assessment with multidetector CT--do tumor perfusion measurements reflect angiogenesis? , 2008, Radiology.

[55]  Katsuhiro Nasu,et al.  Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. , 2009, AJR. American journal of roentgenology.

[56]  Frederik De Keyzer,et al.  Extracranial applications of diffusion-weighted magnetic resonance imaging , 2007, European Radiology.