Deep reinforcement learning for universal quantum state preparation via dynamic pulse control

Accurate and efficient preparation of quantum state is a core issue in building a quantum computer. In this paper, we investigate how to prepare a certain single- or two-qubit target state from arbitrary initial states in semiconductor double quantum dots with only a few discrete control pulses by leveraging the deep reinforcement learning. Our method is based on the training of the network over numerous preparing tasks. The results show that once the network is well trained, it works for any initial states in the continuous Hilbert space. Thus repeated training for new preparation tasks is avoided. Our scheme outperforms the traditional optimization approaches based on gradient with both the higher efficiency and the preparation quality in discrete control space. Moreover, we find that the control trajectories designed by our scheme are robust against stochastic fluctuations within certain thresholds, such as the charge and nuclear noises.

[1]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[2]  Dohun Kim,et al.  Individual two-axis control of three singlet-triplet qubits in a micromagnet integrated quantum dot array , 2020, Applied Physics Letters.

[3]  G. M. Nikolopoulos,et al.  Faithful communication Hamiltonian in photonic lattices. , 2012, Optics letters.

[4]  W. Marsden I and J , 2012 .

[5]  Levente J. Klein,et al.  Spin-Based Quantum Dot Quantum Computing in Silicon , 2004, Quantum Inf. Process..

[6]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[7]  Xin Wang,et al.  Improving the gate fidelity of capacitively coupled spin qubits , 2014, npj Quantum Information.

[8]  Christopher Ferrie,et al.  Self-guided quantum tomography. , 2014, Physical review letters.

[9]  Masahito Ueda,et al.  Deep Reinforcement Learning Control of Quantum Cartpoles , 2019, Physical review letters.

[10]  Zheng An,et al.  Deep reinforcement learning for quantum gate control , 2019, EPL (Europhysics Letters).

[11]  Non-local propagation of correlations in long-range interacting quantum systems , 2014, 1401.5088.

[12]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[13]  Benjamin Rowland,et al.  Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[15]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[16]  Marin Bukov,et al.  Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator , 2018, Physical Review B.

[17]  A. Peruzzo,et al.  Experimental perfect state transfer of an entangled photonic qubit , 2016, Nature Communications.

[18]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[19]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2019 .

[20]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[21]  M. S. Sarandy,et al.  Almost exact state transfer in a spin chain via pulse control , 2020, 2005.01311.

[22]  Stanislav Straupe,et al.  Experimental neural network enhanced quantum tomography , 2019, npj Quantum Information.

[23]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[24]  Xin Wang,et al.  Fast pulse sequences for dynamically corrected gates in singlet-triplet qubits , 2017, 1709.02808.

[25]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[26]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[27]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[28]  Robert Keil,et al.  Perfect transfer of path-entangled photons in J x photonic lattices , 2013 .

[29]  Xin Wang,et al.  Noise-resistant control for a spin qubit array. , 2013, Physical review letters.

[30]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[31]  R. Feynman Simulating physics with computers , 1999 .

[32]  Guang-Can Guo,et al.  Semiconductor quantum computation , 2018, National science review.

[33]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[34]  Da-Wei Luo,et al.  Almost-exact state transfer by leakage-elimination-operator control in a non-Markovian environment , 2020 .

[35]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[36]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[37]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[38]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[39]  S. Das Sarma,et al.  Nonperturbative master equation solution of central spin dephasing dynamics. , 2012, Physical review letters.

[40]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[41]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[42]  Jun Li,et al.  Optimizing adiabatic quantum pathways via a learning algorithm , 2020, 2006.15300.

[43]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[44]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[45]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[46]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[47]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[48]  S. Sarma,et al.  Impurity effects on semiconductor quantum bits in coupled quantum dots , 2011, 1103.0767.

[49]  Masanao Ozawa,et al.  Soundness and completeness of quantum root-mean-square errors , 2018, npj Quantum Information.

[50]  P. Alam ‘K’ , 2021, Composites Engineering.

[51]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[52]  M. Yung,et al.  Neural-network-designed pulse sequences for robust control of singlet-Triplet qubits , 2017, 1708.00238.

[53]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[54]  Xin Wang,et al.  When does reinforcement learning stand out in quantum control? A comparative study on state preparation , 2019, npj Quantum Information.

[55]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[56]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[57]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[58]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[59]  Leong-Chuan Kwek,et al.  Machine Learning meets Quantum Foundations: A Brief Survey , 2020 .

[60]  Thomas Busch,et al.  Universal and optimal coin sequences for high entanglement generation in 1D discrete time quantum walks , 2020, Journal of Physics A: Mathematical and Theoretical.

[61]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[62]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[63]  Saeed Fallahi,et al.  Notch filtering the nuclear environment of a spin qubit. , 2016, Nature nanotechnology.

[64]  Edwin Barnes,et al.  Composite pulses for robust universal control of singlet–triplet qubits , 2012, Nature Communications.

[65]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[66]  Xin Wang,et al.  Robust quantum gates for singlet-triplet spin qubits using composite pulses , 2013, 1312.4523.

[67]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[68]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[69]  Xin Wang,et al.  Automatic spin-chain learning to explore the quantum speed limit , 2018, Physical Review A.

[70]  Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy , 2020 .

[71]  A. Gossard,et al.  Charge-state conditional operation of a spin qubit. , 2011, Physical review letters.

[72]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[73]  Jorge Nocedal,et al.  Optimization Methods for Large-Scale Machine Learning , 2016, SIAM Rev..

[74]  Zhan Shi,et al.  Two-axis control of a singlet–triplet qubit with an integrated micromagnet , 2014, Proceedings of the National Academy of Sciences.

[75]  Tobias Haug,et al.  Classifying global state preparation via deep reinforcement learning , 2020 .

[76]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[77]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[78]  Zhao-Ming Wang,et al.  Accelerated adiabatic quantum search algorithm via pulse control in a non-Markovian environment , 2020 .

[79]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[80]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[81]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[82]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[83]  Andrew S. Dzurak,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.