Biosensors based on nanomechanical systems.

The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption.

[1]  Javier Tamayo,et al.  Label-free DNA-based detection of Mycobacterium tuberculosis and rifampicin resistance through hydration induced stress in microcantilevers. , 2015, Analytical chemistry.

[2]  M. Calleja,et al.  Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. , 2014, Nature nanotechnology.

[3]  M. Calleja,et al.  Physics of Nanomechanical Spectrometry of Viruses , 2014, Scientific Reports.

[4]  Quantification of the surface stress in microcantilever biosensors: revisiting Stoney's equation. , 2012, Nanotechnology.

[5]  Javier Tamayo,et al.  Imaging the surface stress and vibration modes of a microcantilever by laser beam deflection microscopy , 2012, Nanotechnology.

[6]  J. Tamayo,et al.  Interaction of viral ATPases with nucleotides measured with a microcantilever , 2012 .

[7]  M. Roukes,et al.  Single-protein nanomechanical mass spectrometry in real time , 2012, Nature nanotechnology.

[8]  M. Roukes,et al.  Stress-induced variations in the stiffness of micro- and nanocantilever beams. , 2012, Physical review letters.

[9]  Xuexin Duan,et al.  Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. , 2012, Nature nanotechnology.

[10]  J. Tamayo,et al.  Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator. , 2012, Lab on a chip.

[11]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[12]  P. Sharma,et al.  Atomistic elucidation of the effect of surface roughness on curvature-dependent surface energy, surface stress, and elasticity , 2012 .

[13]  E. A. Ilin,et al.  Tailoring the interface of hybrid microresonators in viscid fluids enhances their quality factor by two orders of magnitude. , 2012, Lab on a chip.

[14]  John E. Sader,et al.  Effect of surface stress on the stiffness of thin elastic plates and beams , 2012 .

[15]  M. Lazzarino,et al.  Cycloaddition functionalization of cleaved microstructures. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  M. Calleja,et al.  Optomechanics with silicon nanowires by harnessing confined electromagnetic modes. , 2012, Nano letters.

[17]  Joachim O Rädler,et al.  Discrimination of Escherichia coli strains using glycan cantilever array sensors. , 2012, Nano letters.

[18]  C. Vieu,et al.  Biological functionalization of massively parallel arrays of nanocantilevers using microcontact printing , 2012 .

[19]  Martin Hegner,et al.  Ink-Jet Printing: Perfect Tool for Cantilever Array Sensor Preparation for Microbial Growth Detection , 2012, J. Sensors.

[20]  Marco Lazzarino,et al.  Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars. , 2011, ACS nano.

[21]  Silvan Schmid,et al.  Damping mechanisms in high-Q micro and nanomechanical string resonators , 2011 .

[22]  P. D'Orazio,et al.  Biosensors in clinical chemistry — 2011 update , 2011, Clinica Chimica Acta.

[23]  Subra Suresh,et al.  Measuring single-cell density , 2011, Proceedings of the National Academy of Sciences.

[24]  High-Q micromechanical resonators for mass sensing in dissipative media , 2011 .

[25]  Javier Tamayo,et al.  Shedding light on axial stress effect on resonance frequencies of nanocantilevers. , 2011, ACS nano.

[26]  A. Cagliani,et al.  Ultrasensitive bulk disk microresonator-based sensor for distributed mass sensing , 2011 .

[27]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[28]  T. Baumgart,et al.  Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. , 2011, Annual review of physical chemistry.

[29]  Peter H Seeberger,et al.  Cantilever array sensors detect specific carbohydrate-protein interactions with picomolar sensitivity. , 2011, ACS nano.

[30]  A. Boisen,et al.  Cantilever-like micromechanical sensors , 2011 .

[31]  Genki Yoshikawa,et al.  Nanomechanical membrane-type surface stress sensor. , 2011, Nano letters.

[32]  M. Calleja,et al.  High throughput optical readout of dense arrays of nanomechanical systems for sensing applications. , 2010, The Review of scientific instruments.

[33]  W. J. Venstra,et al.  Mechanical stiffening, bistability, and bit operations in a microcantilever , 2010, 1011.1309.

[34]  Armando C. Duarte,et al.  Review of analytical figures of merit of sensors and biosensors in clinical applications , 2010 .

[35]  Ricardo Garcia,et al.  Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. , 2010, Nature nanotechnology.

[36]  Gengfeng Zheng,et al.  Frequency domain detection of biomolecules using silicon nanowire biosensors. , 2010, Nano letters.

[37]  Seiji Akita,et al.  Carbon nanotube resonator in liquid. , 2010, Nano letters.

[38]  F. Keulen,et al.  Application of electrostatic pull-in instability on sensing adsorbate stiffness in nanomechanical resonators , 2010 .

[39]  R. Salvarezza,et al.  Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. , 2010, Chemical Society reviews.

[40]  P. Ashby,et al.  High sensitivity deflection detection of nanowires. , 2010, Physical review letters.

[41]  Muhammad A. Alam,et al.  Theory of "Selectivity" of label-free nanobiosensors: A geometro-physical perspective. , 2010, Journal of applied physics.

[42]  P. Grutter,et al.  Cantilever-based sensing: the origin of surface stress and optimization strategies , 2010, Nanotechnology.

[43]  M. Despont,et al.  Disentangling mechanical and mass effects on nanomechanical resonators , 2010 .

[44]  B. Kooi,et al.  Influence of random roughness on cantilever curvature sensitivity , 2010, 1001.1645.

[45]  David J. Mooney,et al.  Label-free biomarker detection from whole blood , 2009, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[46]  H. Craighead,et al.  Prion protein detection in serum using micromechanical resonator arrays. , 2009, Talanta.

[47]  Harold G. Craighead,et al.  Detection of prostate specific antigen with nanomechanical resonators. , 2009, Lab on a chip.

[48]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[49]  Anja Boisen,et al.  Design & fabrication of cantilever array biosensors , 2009 .

[50]  Anja Boisen,et al.  Cantilever Sensors: Nanomechanical Tools for Diagnostics , 2009 .

[51]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[52]  Murali Krishna Ghatkesar,et al.  Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. , 2009, Nature nanotechnology.

[53]  Javier Tamayo,et al.  Arrays of dual nanomechanical resonators for selective biological detection. , 2009, Analytical chemistry.

[54]  I. Tothill Biosensors for cancer markers diagnosis. , 2009, Seminars in cell & developmental biology.

[55]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[56]  S. Jeon,et al.  Nanomechanical Thermal Analysis with Silicon Cantilevers of the Mechanical Properties of Poly(vinyl acetate) near the Glass Transition Temperature , 2008 .

[57]  Liviu Nicu,et al.  Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward , 2008 .

[58]  H. Postma,et al.  Atomic-scale mass sensing using carbon nanotube resonators. , 2008, Nano letters.

[59]  Matthew A Cooper,et al.  Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance. , 2008, Nature nanotechnology.

[60]  A. Bachtold,et al.  Ultrasensitive mass sensing with a nanotube electromechanical resonator. , 2008, Nano letters.

[61]  Rachel A. McKendry,et al.  Physics of Nanomechanical Biosensing on Cantilever Arrays , 2008 .

[62]  Huiling Duan,et al.  Cantilever bending with rough surfaces. , 2008, Physical review letters.

[63]  Jiyu Fang,et al.  Elastic modulus of viral nanotubes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature nanotechnology.

[65]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[66]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[67]  Matthew C. Dixon,et al.  Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. , 2008, Journal of biomolecular techniques : JBT.

[68]  Javier Tamayo,et al.  Phototermal self-excitation of nanomechanical resonators in liquids , 2008 .

[69]  Javier Tamayo,et al.  Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. , 2008, Nature nanotechnology.

[70]  Bastian E. Rapp,et al.  Surface acoustic wave biosensors: a review , 2008, Analytical and bioanalytical chemistry.

[71]  J. Colton,et al.  Microcantilevers: sensing chemical interactions via mechanical motion. , 2008, Chemical reviews.

[72]  Murali Krishna Ghatkesar,et al.  Resonating modes of vibrating microcantilevers in liquid , 2008 .

[73]  M. Calleja,et al.  Detection of bacteria based on the thermomechanical noise of a nanomechanical resonator: origin of the response and detection limits , 2008, Nanotechnology.

[74]  Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. , 2010, PloS one.

[75]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[76]  John E Sader,et al.  Effect of surface stress on the stiffness of cantilever plates. , 2007, Physical review letters.

[77]  M. Calleja,et al.  Underlying mechanisms of the self-sustained oscillation of a nanomechanical stochastic resonator in a liquid , 2007 .

[78]  A. Passian,et al.  Microcantilever Biosensors , 2007, 2007 IEEE Sensors.

[79]  H. Craighead,et al.  Micro- and nanomechanical sensors for environmental, chemical, and biological detection. , 2007, Lab on a chip.

[80]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[81]  Subra Suresh,et al.  Biomechanics and biophysics of cancer cells. , 2007, Acta biomaterialia.

[82]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[83]  O. Marti,et al.  Micromechanical properties of tobacco mosaic viruses , 2007, Journal of microscopy.

[84]  David Barlam,et al.  A stiffness switch in human immunodeficiency virus. , 2007, Biophysical journal.

[85]  John E. Sader,et al.  Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order , 2007 .

[86]  Marilyne Sousa,et al.  Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. , 2007, Journal of the American Chemical Society.

[87]  F. Josse,et al.  Effect of Coating Viscoelasticity on Quality Factor and Limit of Detection of Microcantilever Chemical Sensors , 2007, IEEE Sensors Journal.

[88]  H. Craighead Nanomechanical systems: measuring more than mass. , 2007, Nature nanotechnology.

[89]  S. Manalis,et al.  Vacuum-Packaged Suspended Microchannel Resonant Mass Sensor for Biomolecular Detection , 2006, Journal of Microelectromechanical Systems.

[90]  Javier Tamayo,et al.  Effect of the adsorbate stiffness on the resonance response of microcantilever sensors , 2006 .

[91]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[92]  Javier Tamayo,et al.  Origin of the response of nanomechanical resonators to bacteria adsorption , 2006 .

[93]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[94]  Leon M Bellan,et al.  Optically driven resonance of nanoscale flexural oscillators in liquid. , 2006, Nano letters.

[95]  Amit K. Gupta,et al.  Characterization of vaccinia virus particles using microscale silicon cantilever resonators and atomic force microscopy , 2006 .

[96]  D. Ingber,et al.  Cellular mechanotransduction: putting all the pieces together again , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[97]  W S Klug,et al.  Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[99]  C. Robinson,et al.  Mass spectrometry of macromolecular assemblies: preservation and dissociation. , 2006, Current opinion in structural biology.

[100]  Anja Boisen,et al.  Low-noise polymeric nanomechanical biosensors , 2006 .

[101]  L. Lechuga,et al.  Dimension dependence of the thermomechanical noise of microcantilevers , 2006 .

[102]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[103]  S. Balasubramanian,et al.  DNA molecular motor driven micromechanical cantilever arrays. , 2005, Journal of the American Chemical Society.

[104]  M. Linford,et al.  Chemomechanical functionalization and patterning of silicon. , 2005, Accounts of chemical research.

[105]  Murali Krishna Ghatkesar,et al.  Micromechanical mass sensors for biomolecular detection in a physiological environment. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  Heow Pueh Lee,et al.  Surface stress effects on the resonance properties of cantilever sensors , 2005 .

[107]  Stefan Schinkinger,et al.  Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. , 2005, Biophysical journal.

[108]  H. Craighead,et al.  Enumeration of DNA molecules bound to a nanomechanical oscillator. , 2005, Nano letters.

[109]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[110]  L M Lechuga,et al.  Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[111]  Harold G. Craighead,et al.  Virus detection using nanoelectromechanical devices , 2004 .

[112]  Martin Hegner,et al.  Rapid functionalization of cantilever array sensors by inkjet printing , 2004 .

[113]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[114]  M. Roukes,et al.  Ultrasensitive nanoelectromechanical mass detection , 2004, cond-mat/0402528.

[115]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase , 2004, Nature.

[116]  M. Roukes,et al.  Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems , 2003, physics/0309075.

[117]  P. D'Orazio Biosensors in clinical chemistry. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[118]  L. Lechuga,et al.  Development of nanomechanical biosensors for detection of the pesticide DDT. , 2003, Biosensors & bioelectronics.

[119]  Johannes D. Seelig,et al.  Label-free protein assay based on a nanomechanical cantilever array , 2002 .

[120]  Arun Majumdar,et al.  Nanomechanical Forces Generated by Surface Grafted DNA , 2002 .

[121]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[122]  H. Lang,et al.  Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Christina E. Dyllick,et al.  Analytical and Bioanalytical Chemistry , 2002 .

[124]  H. Craighead,et al.  Single cell detection with micromechanical oscillators , 2001 .

[125]  B. Kasemo,et al.  Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. , 2001, Analytical chemistry.

[126]  M. Grattarola,et al.  Micromechanical cantilever-based biosensors , 2001 .

[127]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[128]  W. Haiss,et al.  Surface stress of clean and adsorbate-covered solids , 2001 .

[129]  John E. Sader,et al.  Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: Rectangular plates , 2001 .

[130]  Ernst Meyer,et al.  The noise of cantilevers , 2000 .

[131]  H. Craighead,et al.  Mechanical resonant immunospecific biological detector , 2000 .

[132]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[133]  George G. Guilbault,et al.  Commercial quartz crystal microbalances-Theory and applications , 1999 .

[134]  J Wang,et al.  Amperometric biosensors for clinical and therapeutic drug monitoring: a review. , 1999, Journal of pharmaceutical and biomedical analysis.

[135]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[136]  B. Kasemo,et al.  Energy Dissipation Kinetics for Protein and Antibody−Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance , 1998 .

[137]  M. Matyska,et al.  Methods for the Modification and Characterization of Oxide Surfaces , 1997 .

[138]  James K. Gimzewski,et al.  Surface stress in the self-assembly of alkanethiols on gold , 1997 .

[139]  Michael Thomas Dugger,et al.  Mechanistic Aspects of Alkylchlorosilane Coupling Reactions , 1997 .

[140]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[141]  Thomas Thundat,et al.  Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers , 1995 .

[142]  H. Ibach,et al.  Adsorbate‐induced surface stress , 1994 .

[143]  C R Cantor,et al.  Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA--streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. , 1994, Nucleic acids research.

[144]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[145]  R. N. Thurston,et al.  Effect of surface stress on the natural frequency of thin crystals , 1976 .

[146]  Harry C. Gatos,et al.  Surface stress and the normal mode of vibration of thin crystals :GaAs , 1975 .

[147]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .