Incremental stability of planar Filippov systems

We study the problem of proving incremental stability of a planar Filippov system. In particular, referring to systems that present an attractive sliding region on their discontinuity boundary, we will give a differential condition on such region able to guarantee incremental exponential stability of sliding mode trajectories. We will then derive conditions for the incremental stability of the whole system. The approach is based on using tools from contraction theory, extending their applicability to include discontinuous dynamical systems.

[1]  K. K.,et al.  Stick-slip vibrations and chaos , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[2]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[3]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[4]  Mario di Bernardo,et al.  Contraction Analysis for a Class of NonDifferentiable Systems with Applications to Stability and Network Synchronization , 2014, SIAM J. Control. Optim..

[5]  Nathan van de Wouw,et al.  On convergence properties of piecewise affine systems , 2007, Int. J. Control.

[6]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[7]  Alessandro Astolfi,et al.  Stability of Dynamical Systems - Continuous, Discontinuous, and Discrete Systems (by Michel, A.N. et al.; 2008) [Bookshelf] , 2007, IEEE Control Systems.

[8]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[9]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[10]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[11]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[12]  Mario di Bernardo,et al.  On Contraction of Piecewise Smooth Dynamical Systems , 2011 .

[13]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[14]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[15]  P. Olver Nonlinear Systems , 2013 .

[16]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[17]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[18]  H. Nijmeijer,et al.  Convergent piecewise affine systems: analysis and design Part II: discontinuous case , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[19]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[20]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[21]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[22]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[23]  W. Lohmiller,et al.  Contraction analysis of non-linear distributed systems , 2005 .

[24]  S. Adly,et al.  A stability theory for second-order nonsmooth dynamical systems with application to friction problems , 2004 .

[25]  Mariano Giaquinta,et al.  Mathematical Analysis: Linear and Metric Structures and Continuity , 2004 .

[26]  J. Jouffroy Some ancestors of contraction analysis , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[27]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.