Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α

Restriction factors and pattern recognition receptors are important components of intrinsic cellular defenses against viral infection. Mammalian TRIM5α proteins are restriction factors and receptors that target the capsid cores of retroviruses and activate ubiquitin-dependent antiviral responses upon capsid recognition. Here, we report crystallographic and functional studies of the TRIM5α B-box 2 domain, which mediates higher-order assembly of TRIM5 proteins. The B-box can form both dimers and trimers, and the trimers can link multiple TRIM5α proteins into a hexagonal net that matches the lattice arrangement of capsid subunits and enables avid capsid binding. Two modes of conformational flexibility allow TRIM5α to accommodate the variable curvature of retroviral capsids. B-box mediated interactions also modulate TRIM5α’s E3 ubiquitin ligase activity, by stereochemically restricting how the N-terminal RING domain can dimerize. Overall, these studies define important molecular details of cellular recognition of retroviruses, and how recognition links to downstream processes to disable the virus. DOI: http://dx.doi.org/10.7554/eLife.16309.001

[1]  G. Jensen,et al.  Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids , 2016, eLife.

[2]  E. Campbell,et al.  TRIM5α-Mediated Ubiquitin Chain Conjugation Is Required for Inhibition of HIV-1 Reverse Transcription and Capsid Destabilization , 2015, Journal of Virology.

[3]  Rory Johnson,et al.  RING Dimerization Links Higher-Order Assembly of TRIM5α to Synthesis of K63-Linked Polyubiquitin. , 2015, Cell reports.

[4]  W. Sundquist,et al.  TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription , 2015, The EMBO journal.

[5]  M. Grütter,et al.  Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers , 2015, Scientific Reports.

[6]  Kenneth A. Matreyek,et al.  Structural insight into HIV-1 restriction by MxB. , 2014, Cell host & microbe.

[7]  P. Derreumaux,et al.  Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. , 2014, Journal of chemical theory and computation.

[8]  I. Taylor,et al.  Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice , 2014, Proceedings of the National Academy of Sciences.

[9]  Wei Li,et al.  Structural insights into the TRIM family of ubiquitin E3 ligases , 2014, Cell Research.

[10]  D. Kovalskyy,et al.  Recognition of the HIV capsid by the TRIM5α restriction factor is mediated by a subset of pre-existing conformations of the TRIM5α SPRY domain. , 2014, Biochemistry.

[11]  W. Sundquist,et al.  The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer , 2014, Proceedings of the National Academy of Sciences.

[12]  D. Ivanov,et al.  Rhesus monkey TRIM5α SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. , 2013, Journal of molecular biology.

[13]  A. Gronenborn,et al.  Structural insight into HIV-1 capsid recognition by rhesus TRIM5α , 2012, Proceedings of the National Academy of Sciences.

[14]  S. Goff,et al.  Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module , 2012, Proceedings of the National Academy of Sciences.

[15]  James H. Naismith,et al.  Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis , 2012, Nature.

[16]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[17]  T. Kigawa,et al.  RING Domain Mutations Uncouple TRIM5α Restriction of HIV-1 from Inhibition of Reverse Transcription and Acceleration of Uncoating , 2011, Journal of Virology.

[18]  J. Naismith,et al.  Mechanism of ubiquitylation by dimeric RING ligase RNF4 , 2011, Nature Structural &Molecular Biology.

[19]  T. Kigawa,et al.  Contribution of E3-Ubiquitin Ligase Activity to HIV-1 Restriction by TRIM5αrh: Structure of the RING Domain of TRIM5α , 2011, Journal of Virology.

[20]  J. Sodroski,et al.  Determinants of the Higher Order Association of the Restriction Factor TRIM5α and Other Tripartite Motif (TRIM) Proteins* , 2011, The Journal of Biological Chemistry.

[21]  Jeremy Luban,et al.  TRIM5 is an innate immune sensor for the retrovirus capsid lattice , 2011, Nature.

[22]  J. Sodroski,et al.  Hexagonal assembly of a restricting TRIM5α protein , 2010, Proceedings of the National Academy of Sciences.

[23]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[24]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.

[25]  J. Sodroski,et al.  A B-Box 2 Surface Patch Important for TRIM5α Self-Association, Capsid Binding Avidity, and Retrovirus Restriction , 2009, Journal of Virology.

[26]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[27]  J. Sodroski,et al.  The TRIM5α B-Box 2 Domain Promotes Cooperative Binding to the Retroviral Capsid by Mediating Higher-Order Self-Association , 2008, Journal of Virology.

[28]  J. Sodroski,et al.  Biochemical Characterization of a Recombinant TRIM5α Protein That Restricts Human Immunodeficiency Virus Type 1 Replication , 2008, Journal of Virology.

[29]  J. Sodroski,et al.  Biochemical and Biophysical Characterization of a Chimeric TRIM21-TRIM5α Protein , 2008, Journal of Virology.

[30]  R. Stevens,et al.  Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. , 2007, Protein expression and purification.

[31]  J. Sodroski,et al.  The ability of multimerized cyclophilin A to restrict retrovirus infection. , 2007, Virology.

[32]  I. Taylor,et al.  The design of artificial retroviral restriction factors. , 2007, Virology.

[33]  J. Sodroski,et al.  Modulation of Retroviral Restriction and Proteasome Inhibitor-Resistant Turnover by Changes in the TRIM5α B-Box 2 Domain , 2007, Journal of Virology.

[34]  M. Malim,et al.  TRIM5α Cytoplasmic Bodies Are Highly Dynamic Structures , 2007 .

[35]  M. Blackledge,et al.  Structural characterization of flexible proteins using small-angle X-ray scattering. , 2007, Journal of the American Chemical Society.

[36]  A. Engelman,et al.  Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. , 2006, Virology.

[37]  J. Sodroski,et al.  Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. , 2006, Virology.

[38]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Meroni,et al.  TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[40]  J. Sodroski,et al.  The Contribution of RING and B-box 2 Domains to Retroviral Restriction Mediated by Monkey TRIM5α* , 2005, Journal of Biological Chemistry.

[41]  J. Luban,et al.  TRIM5α selectively binds a restriction-sensitive retroviral capsid , 2005, Retrovirology.

[42]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[44]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[45]  S. Cusack,et al.  Refined crystal structure of the seryl-tRNA synthetase from Thermus thermophilus at 2.5 A resolution. , 1993, Journal of molecular biology.

[46]  Mark Yeager,et al.  Atomic-level modelling of the HIV capsid , 2011 .

[47]  M. Malim,et al.  TRIM5 alpha cytoplasmic bodies are highly dynamic structures. , 2007, Molecular biology of the cell.

[48]  James L Cole,et al.  Analysis of heterogeneous interactions. , 2004, Methods in enzymology.

[49]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[50]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[51]  J. Agulleiro,et al.  Bioinformatics Applications Note Structural Bioinformatics Fast Tomographic Reconstruction on Multicore Computers , 2022 .