Contrasting Effects of the Persistent Na+ Current on Neuronal Excitability and Spike Timing

The persistent Na+ current, INaP, is known to amplify subthreshold oscillations and synaptic potentials, but its impact on action potential generation remains enigmatic. Using computational modeling, whole-cell recording, and dynamic clamp of CA1 hippocampal pyramidal cells in brain slices, we examined how INaP changes the transduction of excitatory current into action potentials. Model simulations predicted that INaP increases afterhyperpolarizations, and, although it increases excitability by reducing rheobase, INaP also reduces the gain in discharge frequency in response to depolarizing current (f/I gain). These predictions were experimentally confirmed by using dynamic clamp, thus circumventing the longstanding problem that INaP cannot be selectively blocked. Furthermore, we found that INaP increased firing regularity in response to sustained depolarization, although it decreased spike time precision in response to single evoked EPSPs. Finally, model simulations demonstrated that I(NaP) increased the relative refractory period and decreased interspike-interval variability under conditions resembling an active network in vivo.

[1]  U. Heinemann,et al.  Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. , 1995, Journal of neurophysiology.

[2]  D. Prince,et al.  A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. , 1980, Journal of neurophysiology.

[3]  Michele Migliore,et al.  Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons , 1999, Journal of Computational Neuroscience.

[4]  Charles J. Wilson,et al.  Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels, through their Selective Coupling to Voltage-Gated Calcium Channels, Are Critical Determinants of the Precision, Pace, and Pattern of Action Potential Generation in Rat Subthalamic Nucleus Neurons In Vitro , 2003, The Journal of Neuroscience.

[5]  Jeffrey C Magee,et al.  Phosphorylation‐dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons , 2002, The Journal of physiology.

[6]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[7]  J. Storm,et al.  Two forms of electrical resonance at theta frequencies, generated by M‐current, h‐current and persistent Na+ current in rat hippocampal pyramidal cells , 2002, The Journal of physiology.

[8]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[9]  M. Borde,et al.  Voltage‐clamp analysis of the potentiation of the slow Ca2+‐activated K+ current in hippocampal pyramidal neurons , 2000, Hippocampus.

[10]  D. DiFrancesco,et al.  Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons , 1997, Pflügers Archiv.

[11]  P. Andersen,et al.  Current-to-frequency transduction in CA1 hippocampal pyramidal cells: Slow prepotentials dominate the primary range firing , 2004, Experimental Brain Research.

[12]  M. Barish,et al.  Modulation of a Slowly Inactivating Potassium Current,ID, by Metabotropic Glutamate Receptor Activation in Cultured Hippocampal Pyramidal Neurons , 1999, The Journal of Neuroscience.

[13]  Lyle J. Borg-Graham,et al.  Additional Efficient Computation of Branched Nerve Equations: Adaptive Time Step and Ideal Voltage Clamp , 2000, Journal of Computational Neuroscience.

[14]  G. Tamás,et al.  Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro , 1998, The Journal of physiology.

[15]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[16]  B S Brown,et al.  KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. , 1998, Science.

[17]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[18]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[19]  C. Colbert,et al.  Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. , 2001, Journal of neurophysiology.

[20]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[21]  Lyle J. Borg-Graham,et al.  Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models , 1999 .

[22]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[23]  J. Lambert,et al.  Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones , 1999, The Journal of physiology.

[24]  Johan F. Storm,et al.  Temporal integration by a slowly inactivating K+ current in hippocampal neurons , 1988, Nature.

[25]  Charles J. Wilson,et al.  Intrinsic Membrane Properties Underlying Spontaneous Tonic Firing in Neostriatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[26]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[27]  C. I. Zeeuw,et al.  Increased Noise Level of Purkinje Cell Activities Minimizes Impact of Their Modulation during Sensorimotor Control , 2005, Neuron.

[28]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[29]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[30]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[31]  D. Johnston,et al.  Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. , 1990, Journal of neurophysiology.

[32]  A. Szücs,et al.  Extended dynamic clamp: controlling up to four neurons using a single desktop computer and interface , 2001, Journal of Neuroscience Methods.

[33]  T I Tóth,et al.  The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones , 1997, The Journal of physiology.

[34]  P W Gage,et al.  The sodium current underlying action potentials in guinea pig hippocampal CA1 neurons , 1988, The Journal of general physiology.

[35]  Matthew F. Nolan,et al.  The Hyperpolarization-Activated HCN1 Channel Is Important for Motor Learning and Neuronal Integration by Cerebellar Purkinje Cells , 2003, Cell.

[36]  William A. Catterall,et al.  Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons , 1990, Nature.

[37]  Y. Jan,et al.  M Channel KCNQ2 Subunits Are Localized to Key Sites for Control of Neuronal Network Oscillations and Synchronization in Mouse Brain , 2001, The Journal of Neuroscience.

[38]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[39]  Paul Tiesinga,et al.  Influence of ionic conductances on spike timing reliability of cortical neurons for suprathreshold rhythmic inputs. , 2004, Journal of neurophysiology.

[40]  L. Walløe,et al.  Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. , 1979, Acta physiologica Scandinavica.

[41]  P W Gage,et al.  Potassium current activated by depolarization of dissociated neurons from adult guinea pig hippocampus , 1988, The Journal of general physiology.

[42]  Dirk Isbrandt,et al.  Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior , 2005, Nature Neuroscience.

[43]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[44]  B. Lancaster,et al.  SK channels and the varieties of slow after‐hyperpolarizations in neurons , 2003, The European journal of neuroscience.

[45]  Johan F. Storm,et al.  Kv 7 / KCNQ / M and HCN / h , but not KCa 2 / SK channels , contribute to the somatic medium after-hyperpolarization and excitability control in CA 1 hippocampal pyramidal cells , 2005 .

[46]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[47]  A. Alonso,et al.  Biophysical Properties and Slow Voltage-Dependent Inactivation of a Sustained Sodium Current in Entorhinal Cortex Layer-II Principal Neurons , 1999, The Journal of general physiology.

[48]  G. Stuart,et al.  Voltage–activated sodium channels amplify inhibition in neocortical pyramidal neurons , 1999, Nature Neuroscience.

[49]  W. N. Ross,et al.  Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Jochen Roeper,et al.  Differential Expression of the Small-Conductance, Calcium-Activated Potassium Channel SK3 Is Critical for Pacemaker Control in Dopaminergic Midbrain Neurons , 2001, The Journal of Neuroscience.

[51]  J. Storm Potassium currents in hippocampal pyramidal cells. , 1990, Progress in brain research.

[52]  Ivan Cohen,et al.  The Beat Goes On: Spontaneous Firing in Mammalian Neuronal Microcircuits , 2004, The Journal of Neuroscience.

[53]  J. Bekkers Distribution of slow AHP channels on hippocampal CA1 pyramidal neurons. , 2000, Journal of neurophysiology.

[54]  John M. Bekkers,et al.  Modulation of Excitability by α-Dendrotoxin-Sensitive Potassium Channels in Neocortical Pyramidal Neurons , 2001, The Journal of Neuroscience.

[55]  R Llinás,et al.  Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. , 1998, Journal of neurophysiology.

[56]  R. Lipowsky,et al.  Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. , 1996, Journal of neurophysiology.

[57]  D. Prince,et al.  Anomalous inward rectification in hippocampal neurons. , 1979, Journal of neurophysiology.

[58]  J M Bekkers,et al.  Apical Dendritic Location of Slow Afterhyperpolarization Current in Hippocampal Pyramidal Neurons: Implications for the Integration of Long-Term Potentiation , 1996, The Journal of Neuroscience.

[59]  M. Hines,et al.  Efficient computation of branched nerve equations. , 1984, International journal of bio-medical computing.

[60]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[61]  J F Storm,et al.  The role of BK‐type Ca2+‐dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells , 1999, The Journal of physiology.

[62]  Paul R. Adams,et al.  Voltage-clamp analysis of muscarinic excitation in hippocampal neurons , 1982, Brain Research.

[63]  Antonio Malgaroli,et al.  Loose-patch recordings of single quanta at individual hippocampal synapses , 1997, Nature.

[64]  B. Bean,et al.  Potassium Currents during the Action Potential of Hippocampal CA3 Neurons , 2002, The Journal of Neuroscience.

[65]  G. Buzsáki,et al.  Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells , 2001, Neuron.

[66]  W Rall,et al.  Matching dendritic neuron models to experimental data. , 1992, Physiological reviews.

[67]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[68]  R. Nicoll,et al.  Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. , 1984, The Journal of physiology.

[69]  S. Scherer,et al.  KCNQ2 Is a Nodal K+ Channel , 2004, The Journal of Neuroscience.

[70]  P. Jonas,et al.  Kv3 Potassium Conductance is Necessary and Kinetically Optimized for High-Frequency Action Potential Generation in Hippocampal Interneurons , 2003, The Journal of Neuroscience.

[71]  P W Gage,et al.  A voltage-dependent persistent sodium current in mammalian hippocampal neurons , 1990, The Journal of general physiology.

[72]  J. Lambert,et al.  The excitability of CA1 pyramidal cell dendrites is modulated by a local Ca2+-dependent K+-conductance , 1995, Brain Research.

[73]  C. McBain,et al.  Frequency‐dependent regulation of rat hippocampal somato‐dendritic excitability by the K+ channel subunit Kv2.1 , 2000, The Journal of physiology.

[74]  Hua Hu,et al.  Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after‐hyperpolarization and excitability control in CA1 hippocampal pyramidal cells , 2005, The Journal of physiology.

[75]  J. Lambert,et al.  Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. , 1995, The Journal of physiology.

[76]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[77]  B. Bean,et al.  Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons , 2002, Neuron.

[78]  P. Schwindt,et al.  Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[80]  P. Gage,et al.  A threshold sodium current in pyramidal cells in rat hippocampus , 1985, Neuroscience Letters.

[81]  William A. Catterall,et al.  Neuromodulation of Na+ channels: An unexpected form of cellular platicity , 2001, Nature Reviews Neuroscience.

[82]  Idan Segev,et al.  Ion Channel Stochasticity May Be Critical in Determining the Reliability and Precision of Spike Timing , 1998, Neural Computation.

[83]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[84]  J F Storm,et al.  An after‐hyperpolarization of medium duration in rat hippocampal pyramidal cells. , 1989, The Journal of physiology.

[85]  Min Zhuo,et al.  Dendritic Ca2+ Channels Characterized by Recordings from Isolated Hippocampal Dendritic Segments , 1997, Neuron.

[86]  P. Schwindt,et al.  Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. , 1985, Journal of neurophysiology.

[87]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[88]  N. Marrion,et al.  Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons , 1998, Nature.