Computer Animation and Simulation ’97

This paper presents a detailed description of the process of motion capture, whereby sensor information from a performer is transformed into an articulated, hierarchical rigid-body object. We describe the gathering of the data, the real-time construction of a virtual skeleton which a director can use for immediate feedback, and the offline processing which produces the articulated object. This offline process involves a robust statistical estimation of the size of the skeleton and an inverse kinematic optimization to produce the desired joint angle trajectories. Additionally, we discuss a variation on the inverse kinematic optimization which can be used when the standard approach does not yield satisfactory results for the special cases when joint angle consistency is desired between a group of motions. These procedures work well and have been used to produce motions for a number of commercial games.

[1]  Ruggero Giuseppe Boscovich A Theory of Natural Philosophy , 1922, Nature.

[2]  F. Biesel Study of wave propagation in water of gradually varying depth , 1952 .

[3]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[4]  D. Greenspan Discrete numerical methods in physics and engineering , 1974 .

[5]  J. Wallace,et al.  Atmospheric Science: An Introductory Survey , 1977 .

[6]  James F. Blinn,et al.  A generalization of algebraic surface drawing , 1982, SIGGRAPH.

[7]  Dana H. Ballard,et al.  Splines as embeddings for generalized cylinders , 1982 .

[8]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[9]  Geoffrey Y. Gardner,et al.  Simulation of natural scenes using textured quadric surfaces , 1984, SIGGRAPH.

[10]  Tosiyasu L. Kunii,et al.  Botanical Tree Image Generation , 1984, IEEE Computer Graphics and Applications.

[11]  Ricki Blau,et al.  Approximate and probabilistic algorithms for shading and rendering structured particle systems , 1985, SIGGRAPH.

[12]  Geoffrey Y. Gardner,et al.  Visual simulation of clouds , 1985, SIGGRAPH.

[13]  Peter Oppenheimer,et al.  Real time design and animation of fractal plants and trees , 1986, SIGGRAPH.

[14]  Darwyn R. Peachey,et al.  Modeling waves and surf , 1986, SIGGRAPH.

[15]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[16]  Alain Fournier,et al.  A simple model of ocean waves , 1986, SIGGRAPH.

[17]  Brian A. Barsky,et al.  Modeling and rendering waves: wave-tracing using beta-splines and reflective and refractive texture mapping. , 1987, TOGS.

[18]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[19]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[20]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[21]  Marc Jaeger,et al.  Plant models faithful to botanical structure and development , 1988, SIGGRAPH.

[22]  James Arvo,et al.  Modeling Plants with Environment-Sensitive Automata , 1988 .

[23]  Xavier Gérard Viennot,et al.  Combinatorial analysis of ramified patterns and computer imagery of trees , 1989, SIGGRAPH.

[24]  Ned Greene,et al.  Voxel space automata: modeling with stochastic growth processes in voxel space , 1989, SIGGRAPH.

[25]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[26]  John Platt,et al.  Heating and melting deformable models (from goop to glop) , 1989 .

[27]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[28]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[29]  Brian Wyvill,et al.  Interactive techniques for implicit modeling , 1990, I3D '90.

[30]  Przemyslaw Prusinkiewicz,et al.  Visualization of botanical structures and processes using parametric L-systems , 1990 .

[31]  David Baraff,et al.  Curved surfaces and coherence for non-penetrating rigid body simulation , 1990, SIGGRAPH.

[32]  T. Clark,et al.  Cloud-environment interface instability : rising thermal calculations in two spatial dimensions , 1991 .

[33]  Daniel Thalmann,et al.  Cloth Animation with Self-Collision Detection , 1991, Modeling in Computer Graphics.

[34]  Claude Cadoz,et al.  An Unified View of Multitude Behavior, Flexibility, Plasticity and Fractures Balls, Bubbles and Agglomerates , 1991, Modeling in Computer Graphics.

[35]  Eliot Goldfinger Human Anatomy for Artists: The Elements of Form , 1991 .

[36]  P. Reffye,et al.  Controlling the architectural geometry of a plant's growth—application to the Begonia genus , 1992 .

[37]  Daniel Thalmann,et al.  Dressing animated synthetic actors with complex deformable clothes , 1992, SIGGRAPH.

[38]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[39]  David Baraff,et al.  Dynamic Simulation of Non-penetrating Rigid Bodies , 1992 .

[40]  David Zeltzer,et al.  Pump it up: computer animation of a biomechanically based model of muscle using the finite element method , 1992, SIGGRAPH.

[41]  T. Clark,et al.  Cloud-Environment Interface Instability: Part II: Extension to Three Spatial Dimensions , 1993 .

[42]  Eugene Fiume,et al.  Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.

[43]  Yoshimasa Takaya The Motion of Uneven Structure of Convective Clouds , 1993 .

[44]  T. Clark,et al.  Cloud-Environment Interface Instability. Part III: Direct Influence of Environmental Shear , 1993 .

[45]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[46]  Christos Faloutsos,et al.  Hilbert R-tree: An Improved R-tree using Fractals , 1994, VLDB.

[47]  Norishige Chiba,et al.  A growth model having the abilities of growth-regulations for simulating visual nature of botanical trees , 1994, Comput. Graph..

[48]  David E. Breen,et al.  Predicting the drape of woven cloth using interacting particles , 1994, SIGGRAPH.

[49]  Henry J. Lamousin,et al.  NURBS-based free-form deformations , 1994, IEEE Computer Graphics and Applications.

[50]  Norishige Chiba,et al.  Visual simulation of botanical trees based on virtual heliotropism and dormancy break , 1994, Comput. Animat. Virtual Worlds.

[51]  Nadia Magnenat-Thalmann,et al.  Efficient self‐collision detection on smoothly discretized surface animations using geometrical shape regularity , 1994, Comput. Graph. Forum.

[52]  Sudhanshu Kumar Semwal,et al.  Biomechanical modeling: Implementing line-of-action algorithm for human muscles and bones using generalized cylinders , 1994, Comput. Graph..

[53]  M. Holton,et al.  Strands, Gravity and Botanical Tree Imagery , 1994, Comput. Graph. Forum.

[54]  Mark James,et al.  Synthetic topiary , 1994, SIGGRAPH.

[55]  Leif Kobbelt,et al.  Using Simulated Annealing to Obtain Good Nodal Approximations of Deformable Bodies , 1995 .

[56]  Dinesh Manocha,et al.  I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.

[57]  Jim Hanan,et al.  The Artificial Life of Plants , 1995 .

[58]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[59]  Mathieu Desbrun,et al.  Animating soft substances with implicit surfaces , 1995, SIGGRAPH.

[60]  Daniel Thalmann,et al.  Interactive Shape Design Using Metaballs and Splines , 1995 .

[61]  V. Leitáo,et al.  Computer Graphics: Principles and Practice , 1995 .

[62]  Jason Weber,et al.  Creation and rendering of realistic trees , 1995, SIGGRAPH.

[63]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[64]  Nadia Magnenat-Thalmann,et al.  Versatile and efficient techniques for simulating cloth and other deformable objects , 1995, SIGGRAPH.

[65]  Manuel N. Gamito,et al.  Two-dimensional simulation of gaseous phenomena using vortex particles , 1995 .

[66]  Giulio Casciola,et al.  Graphics in Parallel Computation for Rendering 3D Modelled Scenes , 1995, Parallel Comput..

[67]  P. Volino,et al.  Collision and Self-Collision Detection :Efficient and Robust Solutions for Highly Deformable Surfaces , 1995 .

[68]  Nelson L. Max,et al.  Rendering Trees from Precomputed Z-Buffer Views , 1995, Rendering Techniques.

[69]  Jean-Christophe Lombardo,et al.  Oriented particles: A tool for shape memory objects modelling , 1995 .

[70]  A. Vapillon,et al.  A Physical Model Of Turbulent Fluids , 1995 .

[71]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[72]  Radomír Mech,et al.  Visual models of plants interacting with their environment , 1996, SIGGRAPH.

[73]  Alla Sheffer,et al.  Volume-preserving free-form solids , 1995, IEEE Trans. Vis. Comput. Graph..

[74]  Richard E. Parent,et al.  Anatomy-based surface generation for articulated models of human figures , 1996 .

[75]  Bedřich Beneš An efficient estimation of light in simulation of plant development , 1996 .

[76]  Norishige Chiba,et al.  Visual Simulation of Leaf Arrangement and Autumn Colours , 1996 .

[77]  Oliver Deussen,et al.  Interactive modelling and animation of branching botanical structures , 1996 .

[78]  Kazufumi Kaneda,et al.  Method for Calculation of Sky Light Luminance Aiming at an Interactive Architectural Design , 1996, Comput. Graph. Forum.

[79]  Xavier Provot Animation realiste de vetements , 1997 .

[80]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .