Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells.

We report on the implementation of stainless steel foils coated with dispersed Single Wall Carbon Nanotubes as novel, low cost and highly efficient counter electrodes for dye sensitized solar cells (DSSCs). We use commercially available non purified nanotubes dispersed in water by ultrasonication and drop cast on stainless steel substrates. When implemented on a ruthenium based DSSC we obtain a high short circuit current density (J(sc)= 9.21 mA cm(-2)), a good open circuit voltage (V(oc) = 0.660 V) and a solar energy conversion efficiency of 3.92%. The above cited values are measured under a light flux of 100 mW cm(-2) generated by a solar simulator equipped with a filter AM 1.5. The obtained results are comparable to those attained using a stainless steel counter electrode sputtered with a 2 microm thick platinum film (J(sc) 10.92 mA cm(-2), V(max) = 0.66 V and eta = 4.5%, AM 1.5).

[1]  Qing Wang,et al.  Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes , 2006 .

[2]  Eiichi Abe,et al.  Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells , 2005 .

[3]  Jie Jiang,et al.  Quantifying carbon-nanotube species with resonance Raman scattering , 2005 .

[4]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[5]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[6]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[7]  J. Coleman,et al.  Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential , 2008 .

[8]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[9]  Arjun G. Yodh,et al.  High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water , 2003 .

[10]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[11]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[12]  Michael Grätzel,et al.  Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder , 1996 .

[13]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[14]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[15]  Kazuhiko Murata,et al.  High-performance carbon counter electrode for dye-sensitized solar cells , 2003 .

[16]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[17]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[18]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[19]  Ado Jorio,et al.  Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications , 2007 .

[20]  J. Maultzsch,et al.  Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment , 2005 .

[21]  R. Car,et al.  Microscopic Growth Mechanisms for Carbon Nanotubes , 1997, Science.

[22]  M. Dresselhaus,et al.  Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. , 2004, Physical review letters.

[23]  Jannik C. Meyer,et al.  E-33 and E-44 optical transitions in semiconducting single-walled carbon nanotubes: Electron diffraction and Raman experiments , 2007 .

[24]  T. Hino,et al.  Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell , 2006 .

[25]  Etienne Goovaerts,et al.  Efficient Isolation and Solubilization of Pristine Single‐Walled Nanotubes in Bile Salt Micelles , 2004 .

[26]  Jaesung Song,et al.  Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. , 2009, ACS applied materials & interfaces.

[27]  Christian Thomsen,et al.  Carbon Nanotubes: Basic Concepts and Physical Properties , 2004 .

[28]  Q. Jiang,et al.  Interface morphology of nanosized Si embedded in Al matrix , 2007 .

[29]  Kuzmany,et al.  Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes , 2000, Physical review letters.

[30]  Daniel E. Resasco,et al.  Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts , 2000 .

[31]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[32]  Yanhong Luo,et al.  Application of carbon materials as counter electrodes of dye-sensitized solar cells , 2007 .

[33]  R. Ruoff,et al.  Structural properties of a carbon-nanotube crystal. , 1994, Physical review letters.

[34]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[35]  M. Grätzel Dye-sensitized solar cells , 2003 .

[36]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[37]  Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects , 2006, cond-mat/0611693.

[38]  Wenjing Hong,et al.  Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells , 2008 .

[39]  O. M. Maragò,et al.  Pulsed laser deposition of multiwalled carbon nanotubes thin films , 2007 .

[40]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[41]  R. Krupke,et al.  Near-Infrared Absorbance of Single-Walled Carbon Nanotubes Dispersed in Dimethylformamide , 2003 .

[42]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[43]  Phonon linewidths and electron-phonon coupling in graphite and nanotubes , 2005, cond-mat/0508700.

[44]  Mikio Kumagai,et al.  Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells , 2003 .

[45]  T. Hertel,et al.  Quantitative analysis of optical spectra from individual single-wall carbon nanotubes , 2003 .

[46]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[47]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[48]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[49]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[50]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[51]  W. Milne,et al.  Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy , 2008 .

[52]  Francesco Mauri,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[53]  B. Landi,et al.  Effects of Alkyl Amide Solvents on the Dispersion of Single-Wall Carbon Nanotubes , 2004 .

[54]  M. Heben,et al.  Selective aggregation of single-walled carbon nanotubes via salt addition. , 2007, Journal of the American Chemical Society.

[55]  Seasoning effect of dye-sensitized solar cells with different counter electrodes , 2006 .

[56]  Yanhong Luo,et al.  A flexible carbon counter electrode for dye-sensitized solar cells , 2009 .

[57]  Sergei Tretiak,et al.  Third and fourth optical transitions in semiconducting carbon nanotubes. , 2007, Physical review letters.

[58]  M. Dresselhaus,et al.  Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes , 2005 .

[59]  J. Coleman,et al.  Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. , 2006, The journal of physical chemistry. B.

[60]  Rodney S. Ruoff,et al.  Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes , 2000 .

[61]  S. Bachilo,et al.  Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot , 2003 .

[62]  Man Gu Kang,et al.  A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate , 2006 .

[63]  A. Saunders,et al.  Flow-through electrodes: II. The I3/−/I− redox couple , 1973 .

[64]  J. Trancik,et al.  Transparent and catalytic carbon nanotube films. , 2008, Nano letters.

[65]  James Hone,et al.  Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. , 2006, Physical review letters.

[66]  Electron interactions and scaling relations for optical excitations in carbon nanotubes. , 2004, Physical review letters.

[67]  W. Milne,et al.  Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube -Polymer Composites , 2008 .

[68]  M. Strano,et al.  Using Raman Spectroscopy to Elucidate the Aggregation State of Single-Walled Carbon Nanotubes , 2004 .

[69]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[70]  W. Milne,et al.  Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. , 2007, Physical review letters.

[71]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[72]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.