Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings

Corrugated silicon nanocone (SiNC) arrays have been fabricated on a silicon wafer by two polystyrene-sphere-monolayer-masked etching steps in order to create high-performance antireflective coatings. The reflectance was reduced from above 35% to less than 0.7% in the range 400–1050 nm, and it remained below 0.5% at incidence angles up to 70° at 632.8 nm for both s- and p-polarized light. The fluorinated corrugated SiNC array surface exhibits superhydrophobic properties with a water contact angle of 164°.

[1]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[2]  Meng-Chi Huang,et al.  Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology , 2008, Nanotechnology.

[3]  K. Hane,et al.  Broadband antireflection gratings fabricated upon silicon substrates. , 1999, Optics letters.

[4]  Philippe M. Fauchet,et al.  Dynamic etching of silicon for broadband antireflection applications , 2002 .

[5]  Peng Jiang,et al.  Bioinspired Self‐Cleaning Antireflection Coatings , 2008 .

[6]  Hsuen‐Li Chen,et al.  Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. , 2007, Optics express.

[7]  M. Giersig,et al.  Nanosphere Lithography — Fabrication of Various Periodic Magnetic Particle Arrays Using Versatile Nanosphere Masks , 2003 .

[8]  Longjian Xue,et al.  Porous Polymer Films with Gradient‐Refractive‐Index Structure for Broadband and Omnidirectional Antireflection Coatings , 2010 .

[9]  Lifeng Chi,et al.  Biomimetic antireflective Si nanopillar arrays. , 2008, Small.

[10]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[11]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[12]  Alexander Zaslavsky,et al.  Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures , 2002 .

[13]  Joachim P Spatz,et al.  Biomimetic interfaces for high-performance optics in the deep-UV light range. , 2008, Nano letters.

[14]  Yoshiaki Kanamori,et al.  Antireflection sub-wavelength gratings fabricated by spin-coating replication , 2005 .

[15]  Bai Yang,et al.  Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings , 2009 .

[16]  Harish Manohara,et al.  A novel silicon nanotips antireflection surface for the micro Sun sensor. , 2005, Nano letters.

[17]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[18]  Zhaoning Yu,et al.  Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff , 2003 .

[19]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[20]  Jongbaeg Kim,et al.  Lithography-Free Fabrication of Large Area Subwavelength Antireflection Structures Using Thermally Dewetted Pt/Pd Alloy Etch Mask , 2009, Nanoscale research letters.

[21]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[22]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[23]  G. Michael Morris,et al.  Antireflection behavior of silicon subwavelength periodic structures for visible light , 1997 .

[24]  Zhongfan Liu,et al.  Cicada wings: a stamp from nature for nanoimprint lithography. , 2006, Small.

[25]  Volker Wittwer,et al.  Antireflective transparent covers for solar devices , 2000 .

[26]  Steven Abbott,et al.  Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting , 2009 .

[27]  J. Zhai,et al.  Fabrication of highly antireflective silicon surfaces with superhydrophobicity. , 2006, The journal of physical chemistry. B.

[28]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[29]  Mehmet Acet,et al.  Reflection properties of nanostructure-arrayed silicon surfaces , 2000 .

[30]  Peichen Yu,et al.  Broadband and omnidirectional antireflection employing disordered GaN nanopillars. , 2008, Optics express.

[31]  Hongming Fan,et al.  Simple lithographic approach for subwavelength structure antireflection , 2007 .