Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

[1]  Radivoje Prodanovic,et al.  A high-throughput cellulase screening system based on droplet microfluidics. , 2014, Biomicrofluidics.

[2]  J. Nielsen,et al.  High-throughput screening for industrial enzyme production hosts by droplet microfluidics. , 2014, Lab on a chip.

[3]  S. Ladame,et al.  New glycosidase substrates for droplet-based microfluidic screening. , 2013, Analytical chemistry.

[4]  Xiao-Xia Xia,et al.  Efficient ethanol production from corncob residues by repeated fermentation of an adapted yeast. , 2013, Bioresource technology.

[5]  Xin Li,et al.  Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry. , 2013, Analytical chemistry.

[6]  Konstantinos P. Koutsoumanis,et al.  Stochasticity in Colonial Growth Dynamics of Individual Bacterial Cells , 2013, Applied and Environmental Microbiology.

[7]  K. Jefimovs,et al.  Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets. , 2013, Analytical chemistry.

[8]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[9]  Jaisoo Kim,et al.  Cultivation of unculturable soil bacteria. , 2012, Trends in biotechnology.

[10]  Fabienne Courtois,et al.  Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. , 2012, Chemistry & biology.

[11]  H. Girault,et al.  Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry. , 2012, Lab on a chip.

[12]  D. Weitz,et al.  Droplet microfluidics for high-throughput biological assays. , 2012, Lab on a chip.

[13]  G. Yvert,et al.  Monitoring single-cell bioenergetics via the coarsening of emulsion droplets , 2012, Proceedings of the National Academy of Sciences.

[14]  Y. Ko,et al.  Isolation of Cellulolytic Bacillus subtilis Strains from Agricultural Environments , 2012, ISRN microbiology.

[15]  Andrew D Griffiths,et al.  A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. , 2012, Lab on a chip.

[16]  Andrew D Griffiths,et al.  Teaching single-cell digital analysis using droplet-based microfluidics. , 2012, Analytical chemistry.

[17]  J. V. van Elsas,et al.  The great screen anomaly—a new frontier in product discovery through functional metagenomics , 2011, Applied Microbiology and Biotechnology.

[18]  D. Huson,et al.  Analysis of 16S rRNA environmental sequences using MEGAN , 2011, BMC Genomics.

[19]  S. Schuster,et al.  Integrative analysis of environmental sequences using MEGAN4. , 2011, Genome research.

[20]  Haakan N Joensson,et al.  Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking. , 2011, Lab on a chip.

[21]  Arindam Banerjee,et al.  Food, feed, fuel: transforming the competition for grains. , 2011, Development and change.

[22]  W. Qin,et al.  Cellulase activities in biomass conversion: measurement methods and comparison , 2010, Critical reviews in biotechnology.

[23]  A. Theberge,et al.  Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. , 2010, Angewandte Chemie.

[24]  W. Wade,et al.  Strategies for culture of 'unculturable' bacteria. , 2010, FEMS microbiology letters.

[25]  W. Mabee,et al.  An overview of second generation biofuel technologies. , 2010, Bioresource technology.

[26]  A. Abate,et al.  Ultrahigh-throughput screening in drop-based microfluidics for directed evolution , 2010, Proceedings of the National Academy of Sciences.

[27]  Lorenz M Mayr,et al.  Novel trends in high-throughput screening. , 2009, Current opinion in pharmacology.

[28]  Wensheng Qin,et al.  Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives , 2009, International journal of biological sciences.

[29]  W. Qin,et al.  The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass , 2009, International journal of biological sciences.

[30]  D. Weitz,et al.  Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. , 2009, Lab on a chip.

[31]  Andrew D Griffiths,et al.  Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. , 2009, Analytical chemistry.

[32]  D. Weitz,et al.  Biocompatible surfactants for water-in-fluorocarbon emulsions. , 2008, Lab on a chip.

[33]  Daniel H. Huson,et al.  Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome , 2008, PloS one.

[34]  Clemens F Kaminski,et al.  From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. , 2008, Angewandte Chemie.

[35]  A. Griffin,et al.  The Social Lives of Microbes , 2007 .

[36]  B. Paulus,et al.  High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. , 2007, FEMS microbiology ecology.

[37]  R. Calbrix,et al.  Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land , 2007 .

[38]  Michael Eisenstein,et al.  Cell sorting: Divide and conquer , 2006, Nature.

[39]  Y. Kamagata,et al.  Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved Cultivation-Based Techniques , 2005, Applied and Environmental Microbiology.

[40]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[41]  S. Giovannoni,et al.  High-Throughput Methods for Culturing Microorganisms in Very-Low-Nutrient Media Yield Diverse New Marine Isolates , 2002, Applied and Environmental Microbiology.

[42]  L. Øvreås,et al.  Microbial diversity and function in soil: from genes to ecosystems. , 2002, Current opinion in microbiology.

[43]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[44]  R. Yasbin,et al.  Genetic characterization of the inducible SOS-like system of Bacillus subtilis , 1984, Journal of bacteriology.

[45]  R. D'ari,et al.  Dissociation of tsl-tif-Induced Filamentation and recA Protein Synthesis in Escherichia coli K-12 , 1980, Journal of bacteriology.

[46]  T. C. McIlvaine,et al.  A BUFFER SOLUTION FOR COLORIMETRIC COMPARISON , 1921 .

[47]  S. Kuster Interfacing Droplet Microfluidics with Matrix–Assisted Desorption/Ionization Mass Spectrometry , 2015 .

[48]  N. Gilkes,et al.  Cellulose hydrolysis by bacteria and fungi. , 1995, Advances in microbial physiology.

[49]  J. Aubert,et al.  The biological degradation of cellulose. , 1994, FEMS microbiology reviews.

[50]  J. T. Staley,et al.  Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. , 1985, Annual review of microbiology.