THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA

© 2015. The American Astronomical Society. All rights reserved. Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features. We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000 solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (∼400-800 K) planets can distinguish cloudy spectra, which have moderate albedos (0.05-0.20), from hazy models, which are very dark (0.0-0.03). Reflected light spectra of cold planets (∼200 K) accessible to a space-based visible light coronagraph will have high albedos and large molecular features that will allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize this population of planets, including transmission spectra of hot (≳1000 K) targets, thermal emission spectra of warm targets using the James Webb Space Telescope, high spectral resolution (R∼105) observations of cloudy targets, and reflected light spectral observations of directly imaged cold targets. Despite the dearth of features observed in super Earth transmission spectra to date, different observations will provide rich diagnostics of their atmospheres.

[1]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[2]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[3]  S. Tashkun,et al.  Semi-empirical 12C16O2 IR line lists for simulations up to 1500 K and 20,000 cm−1 , 2013 .

[4]  N. Santos,et al.  Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope , 2014, 1405.1056.

[5]  M. Marley,et al.  THE ATMOSPHERIC CIRCULATION OF THE SUPER EARTH GJ 1214b: DEPENDENCE ON COMPOSITION AND METALLICITY , 2014, 1401.1898.

[6]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[7]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[8]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[9]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[10]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[11]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[12]  J. Teske,et al.  Optical observations of the transiting exoplanet GJ 1214b , 2013, 1302.3644.

[13]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[14]  Sara Seager,et al.  On the Insignificance of Photochemical Hydrocarbon Aerosols in the Atmospheres of Close-in Extrasolar Giant Planets , 2004 .

[15]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[16]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[17]  Yuk L. Yung,et al.  High-temperature Photochemistry in the Atmosphere of HD 189733b , 2010 .

[18]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[19]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[20]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[21]  Thomas P. Greene,et al.  TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE JAMES WEBB SPACE TELESCOPE , 2010, 1010.2451.

[22]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[23]  M. Marley,et al.  GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES , 2014, 1409.0026.

[24]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[25]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[26]  A. Wolfgang,et al.  HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF KEPLER’S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU , 2014, 1409.2982.

[27]  D. Saumon,et al.  NEW H2 COLLISION-INDUCED ABSORPTION AND NH3 OPACITY AND THE SPECTRA OF THE COOLEST BROWN DWARFS , 2012, 1202.6293.

[28]  J. Fortney,et al.  THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY , 2013, 1305.0269.

[29]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[30]  Jonathan J. Fortney,et al.  HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND , 2012, 1205.0010.

[31]  Christopher P. McKay,et al.  Analytic Solutions for the Antigreenhouse Effect: Titan and the Early Earth , 1999 .

[32]  M. Marley,et al.  QUANTITATIVELY ASSESSING THE ROLE OF CLOUDS IN THE TRANSMISSION SPECTRUM OF GJ 1214b , 2013, 1305.4124.

[33]  G. Vasisht,et al.  THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b? , 2011, 1104.3183.

[34]  Norman Murray,et al.  BROADBAND TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH GJ 1214b SUGGESTS A LOW MEAN MOLECULAR WEIGHT ATMOSPHERE , 2011, 1104.0011.

[35]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[36]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[37]  R. Perna,et al.  HIGH RESOLUTION TRANSMISSION SPECTROSCOPY AS A DIAGNOSTIC FOR JOVIAN EXOPLANET ATMOSPHERES: CONSTRAINTS FROM THEORETICAL MODELS , 2014, 1409.1250.

[38]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[39]  D. Sasselov,et al.  THE ATMOSPHERIC SIGNATURES OF SUPER-EARTHS: HOW TO DISTINGUISH BETWEEN HYDROGEN-RICH AND HYDROGEN-POOR ATMOSPHERES , 2008, 0808.1902.

[40]  Tyler D. Robinson,et al.  Titan solar occultation observations reveal transit spectra of a hazy world , 2014, Proceedings of the National Academy of Sciences.

[41]  D. Saumon,et al.  WATER CLOUDS IN Y DWARFS AND EXOPLANETS , 2014, 1404.0005.

[42]  F. Fressin,et al.  CHARACTERISTICS OF KEPLER PLANETARY CANDIDATES BASED ON THE FIRST DATA SET , 2010, 1006.2799.

[43]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[44]  Claudia Emde,et al.  New secondary-scattering correction in DISORT with increased efficiency for forward scattering , 2011 .

[45]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[46]  J. Fortney,et al.  THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS , 2011, 1104.5477.

[47]  J. Koppenhoefer,et al.  Optical to near-infrared transit observations of super-Earth GJ 1214b: water-world or mini-Neptune? , 2011, 1111.2628.

[48]  Kevin France,et al.  THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS , 2012, 1212.4833.

[49]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[50]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[51]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[52]  C. McKay,et al.  The greenhouse and antigreenhouse effects on Titan , 1991, Science.

[53]  M. Tomasko,et al.  Properties of scatterers in the troposphere and lower stratosphere of Uranus based on Voyager imaging data , 1991 .

[54]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[55]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[56]  J. Leconte,et al.  3D MODELING OF GJ1214B’S ATMOSPHERE: VERTICAL MIXING DRIVEN BY AN ANTI-HADLEY CIRCULATION , 2015, 1509.06814.

[57]  Markus Kraft,et al.  SURFACE CHEMISTRY AND PARTICLE SHAPE: PROCESSES FOR THE EVOLUTION OF AEROSOLS IN TITAN's ATMOSPHERE , 2011 .

[58]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[59]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[60]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[61]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[62]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[63]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[64]  J. Tennyson,et al.  ExoMol line lists – VII. The rotation–vibration spectrum of phosphine up to 1500 K , 2014, 1410.2917.

[65]  G. Versteeg,et al.  Energy Conversion Processes , 2001 .

[66]  M. Line,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. III. DIAGNOSING CHEMICAL DISEQUILIBRIUM IN PLANETARY ATMOSPHERES , 2013, 1309.6679.

[67]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[68]  J. Tennyson,et al.  A variationally computed line list for hot NH3 , 2010, 1011.1569.

[69]  J. Fortney,et al.  OBSERVATIONAL EVIDENCE FOR A METAL-RICH ATMOSPHERE ON THE SUPER-EARTH GJ1214b , 2011, 1103.2370.

[70]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[71]  T. Barman,et al.  HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b , 2011, 1104.1173.

[72]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[73]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[74]  D. Saumon,et al.  The Evolution of L and T Dwarfs in Color-Magnitude Diagrams , 2008, 0808.2611.

[75]  F. Murgas,et al.  Narrow band Hα photometry of the super-Earth GJ 1214b with GTC/OSIRIS tunable filters , 2012, 1206.6619.

[76]  R. Freedman,et al.  Reliable infrared line lists for 13 CO2 isotopologues up to E′=18,000 cm−1 and 1500 K, with line shape parameters , 2014 .

[77]  B. Fegley,et al.  ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON , 2010, 1001.3639.

[78]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[79]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[80]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[81]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[82]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[83]  Nikole K. Lewis,et al.  SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE , 2012, 1301.6763.

[84]  Sergei N. Yurchenko,et al.  ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K , 2014, 1401.4852.

[85]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[86]  M. Querry,et al.  Optical constants of minerals and other materials from the millimeter to the ultraviolet , 1987 .

[87]  Laurence S. Rothman,et al.  New section of the HITRAN database: Collision-induced absorption (CIA) , 2012 .

[88]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[89]  Christopher P. McKay,et al.  Physical properties of the organic aerosols and clouds on Titan , 2001 .

[90]  P. Gierasch,et al.  Energy conversion processes in the outer planets. , 1985 .