Exchange markets

The exchange market is a basic model of an economy, where agents bring resources that they own to the market in order to exchange them for other goods that they need. There is a rich literature on the equilibrium properties of such markets starting with the work of Arrow and Debreu. In this note we survey recent results on proportional response dynamics in exchange markets with linear utilities and suggest several directions for future work.

[1]  Rahul Garg,et al.  Auction Algorithms for Market Equilibrium , 2006, Math. Oper. Res..

[2]  H. Scarf The Computation of Equilibrium Prices: An Exposition , 1977 .

[3]  Nikhil R. Devanur,et al.  Market Equilibria in Polynomial Time for Fixed Number of Goods or Agents , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[4]  H. Scarf Some Examples of Global Instability of the Competitive Equilibrium , 1960 .

[5]  Richard Cole,et al.  Fast-converging tatonnement algorithms for one-time and ongoing market problems , 2008, STOC.

[6]  Martin Hoefer,et al.  Ascending-Price Algorithms for Unknown Markets , 2015, EC.

[7]  Richard Cole,et al.  Dynamics of Distributed Updating in Fisher Markets , 2018, EC.

[8]  Peter J. Wangersky,et al.  Lotka-Volterra Population Models , 1978 .

[9]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[10]  Kurt Mehlhorn,et al.  An Improved Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market , 2015, SODA.

[11]  Kamal Jain,et al.  A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[13]  Richard Cole,et al.  Amortized Analysis on Asynchronous Gradient Descent , 2014, ArXiv.

[14]  Michal Feldman,et al.  The Proportional-Share Allocation Market for Computational Resources , 2009, IEEE Transactions on Parallel and Distributed Systems.

[15]  Bruno Codenotti,et al.  Market equilibrium via the excess demand function , 2005, STOC '05.

[16]  Richard Cole,et al.  Tatonnement in ongoing markets of complementary goods , 2012, EC '12.

[17]  A. J. Lotka Contribution to the Theory of Periodic Reactions , 1909 .

[18]  Simina Brânzei,et al.  Universal Growth in Production Economies , 2018, NeurIPS.

[19]  Nikhil R. Devanur,et al.  Market equilibrium via a primal--dual algorithm for a convex program , 2008, JACM.

[20]  László A. Végh,et al.  A strongly polynomial algorithm for linear exchange markets , 2018, STOC.

[21]  L. Shapley,et al.  Trade Using One Commodity as a Means of Payment , 1977, Journal of Political Economy.

[22]  L. Hurwicz,et al.  ON THE STABILITY OF THE COMPETITIVE EQUILIBRIUM, I1 , 1958 .

[23]  D. Gale A NOTE ON GLOBAL INSTABILITY OF COMPETITIVE EQUILIBRIUM , 1963 .

[24]  Kurt Mehlhorn,et al.  A combinatorial polynomial algorithm for the linear Arrow-Debreu market , 2012, Inf. Comput..

[25]  Yun Kuen Cheung,et al.  Learning in Markets: Greed Leads to Chaos but Following the Price is Right , 2021, IJCAI.

[26]  Fang Wu,et al.  Proportional response dynamics leads to market equilibrium , 2007, STOC '07.

[27]  Li Zhang Proportional response dynamics in the Fisher market , 2011, Theor. Comput. Sci..

[28]  Léon Walras Éléments d'économie politique pure, ou, Théorie de la richesse sociale , 1976 .

[29]  Pascal Bridel General equilibrium analysis : a century after Walras , 2013 .

[30]  Martin Hoefer,et al.  Tracing Equilibrium in Dynamic Markets via Distributed Adaptation , 2019, AAMAS.

[31]  Nikhil R. Devanur,et al.  An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case , 2003, FSTTCS.

[32]  Sriram V. Pemmaraju,et al.  On the polynomial time computation of equilibria for certain exchange economies , 2005, SODA '05.

[33]  Yuval Rabani,et al.  Convergence of Tâtonnement in Fisher Markets , 2014, ArXiv.

[34]  Nikhil R. Devanur,et al.  Proportional Dynamics in Exchange Economies , 2019, EC.

[35]  Nikhil R. Devanur,et al.  Distributed algorithms via gradient descent for fisher markets , 2011, EC '11.

[36]  V. Volterra Variations and Fluctuations of the Number of Individuals in Animal Species living together , 1928 .

[37]  Yinyu Ye,et al.  A path to the Arrow–Debreu competitive market equilibrium , 2007, Math. Program..

[38]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[39]  Mihalis Yannakakis,et al.  DATE AND TIME ! ! ! A Complementary Pivot Algorithm for Market Equilibrium under Separable , Piecewise-Linear Concave Utilities , 2012 .

[40]  H. Scarf,et al.  How to Compute Equilibrium Prices in 1891 , 2005 .

[41]  Nikhil R. Devanur,et al.  Tatonnement beyond gross substitutes? Gradient descent to the rescue , 2020, Games Econ. Behav..

[42]  Xiaotie Deng,et al.  On the complexity of price equilibria , 2003, J. Comput. Syst. Sci..

[43]  Amin Saberi,et al.  Approximating Market Equilibria , 2003, RANDOM-APPROX.

[44]  Amin Saberi,et al.  Leontief economies encode nonzero sum two-player games , 2006, SODA '06.