Automatic bandwidth choice and confidence intervals in nonparametric regression

In the present paper we combine the issues of bandwidth choice and construction of confidence intervals in nonparametric regression. Main emphasis is put on fully data-driven methods. We modify the √n-consistent bandwidth selector of Hahrdle, Hall and Marron such that it is appropriate for heteroscedastic data, and we show how one can optimally choose the bandwidth g of the pilot estimator m g . Then we consider classical confidence intervals based on kernel estimators with data-driven bandwidths and compare their coverage accuracy. We propose a method to put undersmoothing with a data-driven bandwidth into practice and show that this procedure outperforms explicit bias correction.

[1]  W. Härdle,et al.  Bootstrapping in Nonparametric Regression: Local Adaptive Smoothing and Confidence Bands , 1988 .

[2]  P. Hall On Bootstrap Confidence Intervals in Nonparametric Regression , 1992 .

[3]  H. Müller,et al.  Kernels for Nonparametric Curve Estimation , 1985 .

[4]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[5]  Rudolf Beran Discussion: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[6]  H. Müller,et al.  Variable Bandwidth Kernel Estimators of Regression Curves , 1987 .

[7]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[8]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[9]  James Stephen Marron,et al.  Regression smoothing parameters that are not far from their optimum , 1992 .

[10]  P. Hall Edgeworth expansions for nonparametric density estimators, with applications , 1991 .

[11]  P. Hall EFFECT OF BIAS ESTIMATION ON COVERAGE ACCURACY OF BOOTSTRAP CONFIDENCE INTERVALS FOR A PROBABILITY DENSITY , 1992 .

[12]  Ib M. Skovgaard,et al.  On Multivariate Edgeworth Expansions , 1986 .

[13]  P. Whittle,et al.  Bounds for the Moments of Linear and Quadratic Forms in Independent Variables , 1960 .

[14]  Simon J. Sheather,et al.  Using non stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives , 1991 .

[15]  Wolfgang Härdle,et al.  Better Bootstrap Confidence Intervals for Regression Curve Estimation , 1995 .

[16]  J. Faraway,et al.  Bootstrap choice of bandwidth for density estimation , 1990 .

[17]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[18]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[19]  Julian J. Faraway Bootstrap selection of bandwidth and confidence bands for nonparametric regression , 1990 .

[20]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .