TGFβ Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4

[1]  J. Massagué,et al.  Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. , 2003, Nature reviews. Cancer.

[2]  J. Bingham Letter: Lower oesophageal sphincter. , 1974, Lancet.

[3]  D. Christiani,et al.  Leaking Capillaries and White Lung in Sepsis—Is Angiopoietin 2 the Culprit? Excess Circulating Angiopoietin-2 May Contribute to Pulmonary Vascular Leak in Sepsis in Humans. PLoS Medicine 3: e46, 2006 , 2006 .

[4]  Pierre Corvol,et al.  Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. , 2003, The American journal of pathology.

[5]  M. Olivé,et al.  Long-term human breast carcinoma cell lines of metastatic origin: Preliminary characterization , 1978, In Vitro.

[6]  Tomoyuki Shirai,et al.  MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. , 2005, Cancer cell.

[7]  AC Tose Cell , 1993, Cell.

[8]  R Wieser,et al.  TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. , 1999, The Journal of clinical investigation.

[9]  C. Hill,et al.  Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. , 2006, Cytokine & growth factor reviews.

[10]  Andy J. Minn,et al.  Genes that mediate breast cancer metastasis to lung , 2005, Nature.

[11]  Howard Y. Chang,et al.  Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Thiery Epithelial–mesenchymal transitions in tumour progression , 2002, Nature Reviews Cancer.

[13]  Y. Oghiso,et al.  Distribution of colloidal carbon in lymph nodes of mice injected by different routes. , 1979, The Japanese journal of experimental medicine.

[14]  J. Massagué,et al.  Complementation between kinase‐defective and activation‐defective TGF‐beta receptors reveals a novel form of receptor cooperativity essential for signaling. , 1996, The EMBO journal.

[15]  G. Camenisch,et al.  ANGPTL3 Stimulates Endothelial Cell Adhesion and Migration via Integrin αvβ3 and Induces Blood Vessel Formation in Vivo * , 2002, The Journal of Biological Chemistry.

[16]  J. Massagué,et al.  TGFbeta signaling in growth control, cancer, and heritable disorders. , 2000, Cell.

[17]  S. Anderson,et al.  Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation , 2004, Cell.

[18]  B. Olson,et al.  Inhibition of Transforming Growth Factor (TGF)- 1–Induced Extracellular Matrix with a Novel Inhibitor of the TGF- Type I Receptor Kinase Activity: SB-431542 , 2002 .

[19]  M. Nakajima,et al.  Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Greenberg,et al.  Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. , 1993, The American journal of pathology.

[21]  Holger Weber,et al.  Extracellular Matrix–Bound Angiopoietin-Like 4 Inhibits Endothelial Cell Adhesion, Migration, and Sprouting and Alters Actin Cytoskeleton , 2006, Circulation research.

[22]  Roger R. Gomis,et al.  C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells , 2006 .

[23]  R. Cardiff,et al.  Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Bernards,et al.  Stable suppression of tumorigenicity by virus-mediated RNA interference. , 2002, Cancer cell.

[25]  R. Beroukhim,et al.  Molecular definition of breast tumor heterogeneity. , 2007, Cancer cell.

[26]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[27]  D. Rimm,et al.  Use of magnetic enrichment for detection of carcinoma cells in fluid specimens , 2002, Cancer.

[28]  Elisabetta Dejana,et al.  Endothelial cell–cell junctions: happy together , 2004, Nature Reviews Molecular Cell Biology.

[29]  Edi Brogi,et al.  ID genes mediate tumor reinitiation during breast cancer lung metastasis , 2007, Proceedings of the National Academy of Sciences.

[30]  R. Blasberg,et al.  A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[31]  T. Suda,et al.  Angiopoietin-Related/Angiopoietin-Like Proteins Regulate Angiogenesis , 2004, International journal of hematology.

[32]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[33]  Brian Bierie,et al.  Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. , 2005, Cancer research.

[34]  P. Campochiaro,et al.  Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. , 2002, Developmental cell.

[35]  J. Nevins,et al.  Linking oncogenic pathways with therapeutic opportunities , 2006, Nature Reviews Cancer.

[36]  J. Massagué,et al.  The logic of TGFβ signaling , 2006 .

[37]  C. Arteaga,et al.  Targeting the TGF beta signaling network in human neoplasia. , 2003, Cancer cell.

[38]  I. Fidler,et al.  The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited , 2003, Nature Reviews Cancer.

[39]  H. Ishwaran,et al.  Lung metastasis genes couple breast tumor size and metastatic spread , 2007, Proceedings of the National Academy of Sciences.

[40]  Brian Bierie,et al.  Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer , 2006, Nature Reviews Cancer.

[41]  J. Massagué,et al.  The logic of TGFbeta signaling. , 2006, FEBS letters.

[42]  Carlos L. Arteaga,et al.  Targeting the TGFβ signaling network in human neoplasia , 2003 .

[43]  René Bernards,et al.  A progression puzzle. , 2002, Nature.

[44]  J. Massagué,et al.  Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[46]  L. Chin,et al.  Comparative Oncogenomics Identifies NEDD9 as a Melanoma Metastasis Gene , 2006, Cell.

[47]  J. Massagué,et al.  Smad transcription factors. , 2005, Genes & development.

[48]  J. Massagué,et al.  A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. , 2003, Molecular cell.

[49]  D. Welch Transforming growth factor β stimulates mamary adenocarcinoma cell invasion and metastasis potential , 1990 .

[50]  S Paget,et al.  THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. , 1889 .

[51]  P. Fritz,et al.  Prognostic Significance of Transforming Growth Factor β Receptor II in Estrogen Receptor-Negative Breast Cancer Patients , 2004, Clinical Cancer Research.

[52]  J. Massagué,et al.  Cancer Metastasis: Building a Framework , 2006, Cell.

[53]  G. Camenisch,et al.  ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. , 2002, The Journal of biological chemistry.

[54]  Paula D. Bos,et al.  Mediators of vascular remodelling co-opted for sequential steps in lung metastasis , 2007, Nature.

[55]  R. Mulligan,et al.  A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Christiani,et al.  Excess Circulating Angiopoietin-2 May Contribute to Pulmonary Vascular Leak in Sepsis in Humans , 2006, PLoS medicine.

[57]  R. Tibshirani,et al.  Repeated observation of breast tumor subtypes in independent gene expression data sets , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Flavell,et al.  Transforming growth factor-beta in T-cell biology. , 2002, Nature reviews. Immunology.

[59]  Wei He,et al.  Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Massagué,et al.  E2F4/5 and p107 as Smad Cofactors Linking the TGFβ Receptor to c-myc Repression , 2002, Cell.

[61]  Robert Walgate,et al.  Proliferation , 1985, Nature.

[62]  Pierre Corvol,et al.  Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness , 2006, Proceedings of the National Academy of Sciences.

[63]  H. G. Kim,et al.  Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. , 2000, The Biochemical journal.

[64]  S. Rafii,et al.  VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche , 2005, Nature.

[65]  G. Mundy Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities , 2002, Nature Reviews Cancer.

[66]  J. Massagué,et al.  C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. , 2006, Cancer cell.

[67]  Y. Masuho,et al.  Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. , 2003, Cancer research.

[68]  J. Massagué,et al.  Smad4/DPC4 Silencing and Hyperactive Ras Jointly Disrupt Transforming Growth Factor-β Antiproliferative Responses in Colon Cancer Cells* , 1999, The Journal of Biological Chemistry.

[69]  D. Witte,et al.  Angiopoietin-like-4 is a potential angiogenic mediator in arthritis. , 2005, Clinical immunology.