Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer

[1]  O. Voznyy,et al.  Double‐Sided Junctions Enable High‐Performance Colloidal‐Quantum‐Dot Photovoltaics , 2016, Advanced materials.

[2]  C. Brabec,et al.  Overcoming Electrode‐Induced Losses in Organic Solar Cells by Tailoring a Quasi‐Ohmic Contact to Fullerenes via Solution‐Processed Alkali Hydroxide Layers , 2016 .

[3]  Seung-Hwan Oh,et al.  Low‐Temperature‐Processed 9% Colloidal Quantum Dot Photovoltaic Devices through Interfacial Management of p–n Heterojunction , 2016 .

[4]  Jiang Tang,et al.  Spectra-selective PbS quantum dot infrared photodetectors. , 2016, Nanoscale.

[5]  Xiaokun Yang,et al.  Controllable Growth Orientation of SnS2 Flakes for Low‐Noise, High‐Photoswitching Ratio, and Ultrafast Phototransistors , 2016 .

[6]  Liang Gao,et al.  Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics , 2016 .

[7]  Shinuk Cho,et al.  Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer , 2016 .

[8]  Oleksandr Voznyy,et al.  High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. , 2015, Nano letters.

[9]  F. P. García de Arquer,et al.  Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling. , 2015, Nano letters.

[10]  Aram Amassian,et al.  Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers , 2014 .

[11]  T. Rao,et al.  Detailed understanding of the excitation-intensity dependent photoluminescence of ZnO materials: Role of defects , 2014 .

[12]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[13]  Yizheng Jin,et al.  Ligand Exchange of Colloidal ZnO Nanocrystals from the High Temperature and Nonaqueous Approach , 2013 .

[14]  R. Rai Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films , 2013 .

[15]  Moungi G Bawendi,et al.  Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. , 2013, Nano letters.

[16]  Song Chen,et al.  Inverted Polymer Solar Cells with Reduced Interface Recombination , 2012 .

[17]  Luping Yu,et al.  Metal Oxide Nanoparticles as an Electron‐Transport Layer in High‐Performance and Stable Inverted Polymer Solar Cells , 2012, Advanced materials.

[18]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[19]  F. Wise,et al.  Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. , 2012, Nature nanotechnology.

[20]  Xin Wang,et al.  Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature , 2012 .

[21]  F. Krebs,et al.  Enhancing functionality of ZnO hole blocking layer in organic photovoltaics , 2012 .

[22]  H. Assender,et al.  The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. , 2012, Nano letters.

[23]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[24]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[25]  J. Bisquert,et al.  Assessing Possibilities and Limits for Solar Cells , 2011 .

[26]  Moungi G Bawendi,et al.  Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. , 2011, Nano letters.

[27]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[28]  V. Bulović,et al.  Interfacial Recombination for Fast Operation of a Planar Organic/QD Infrared Photodetector , 2010, Advanced materials.

[29]  P. Ramesh,et al.  Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application , 2010 .

[30]  Shikuan Yang,et al.  Blue Luminescence of ZnO Nanoparticles Based on Non‐Equilibrium Processes: Defect Origins and Emission Controls , 2010 .

[31]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[32]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[33]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[34]  Sang Hoon Oh,et al.  Influence of thermal annealing ambient on Ga-doped ZnO thin films , 2007 .

[35]  G. Konstantatos,et al.  PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain , 2007 .

[36]  Yuning Li,et al.  Stable, solution-processed, high-mobility ZnO thin-film transistors. , 2007, Journal of the American Chemical Society.

[37]  P John Thomas,et al.  Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. , 2006, The journal of physical chemistry. B.

[38]  S. Christoulakis,et al.  Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD , 2006 .

[39]  Peisheng Liu,et al.  Violet photoluminescence from shell layer of Zn∕ZnO core-shell nanoparticles induced by laser ablation , 2006 .

[40]  E. Fitzgerald,et al.  The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis , 2006 .

[41]  G. Konstantatos,et al.  Efficient Infrared Electroluminescent Devices Using Solution‐Processed Colloidal Quantum Dots , 2005 .

[42]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[43]  Christoph J. Brabec,et al.  Simulation of light intensity dependent current characteristics of polymer solar cells , 2004 .

[44]  S. Lau,et al.  Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. , 2003 .

[45]  Lin Guo,et al.  Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties , 2000 .

[46]  D. Look,et al.  Residual Native Shallow Donor in ZnO , 1999 .

[47]  J. Sites,et al.  Diode quality factor determination for thin-film solar cells , 1989 .

[48]  R. M. Warner,et al.  Diffused junction depletion layer calculations , 1960 .

[49]  Illan J. Kramer,et al.  Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.

[50]  Shinuk Cho,et al.  Amine‐Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells , 2014, Advanced materials.

[51]  Uwe Rau,et al.  Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis , 2000 .