Linear feedback stabilization of a dispersively monitored qubit

The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.

[1]  K. Mølmer,et al.  Qubit purification speed-up for three complementary continuous measurements , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  C. C. Bultink,et al.  Feedback control of a solid-state qubit using high-fidelity projective measurement. , 2012, Physical review letters.

[3]  Leigh S. Martin,et al.  Quantum dynamics of simultaneously measured non-commuting observables , 2016, Nature.

[4]  A. N. Korotkov,et al.  Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback , 2012, Nature.

[5]  P. Facchi,et al.  Quantum Zeno dynamics: mathematical and physical aspects , 2008, 0903.3297.

[6]  I. Siddiqi,et al.  Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits. , 2015, Physical review letters.

[7]  A. Korotkov,et al.  Continuous quantum feedback of coherent oscillations in a solid-state qubit , 2005, cond-mat/0507011.

[8]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[9]  Daniel Nigg,et al.  Undoing a quantum measurement. , 2013, Physical review letters.

[10]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[11]  Qin Zhang,et al.  Maintaining coherent oscillations in a solid-state qubit via continuous quantum feedback control , 2004, SPIE Defense + Commercial Sensing.

[12]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[13]  I. Siddiqi,et al.  Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics , 2015, 1512.04006.

[14]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .

[15]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[16]  A. Jordan,et al.  Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis , 2006, cond-mat/0606676.

[17]  A. Jordan,et al.  Uncollapsing the wavefunction by undoing quantum measurements , 2009, 0906.3468.

[18]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[19]  Alexander N. Korotkov,et al.  Quantum Bayesian approach to circuit QED measurement , 2011, 1111.4016.

[20]  K. B. Whaley,et al.  Supplementary Information for " Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits " , 2014 .

[21]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[22]  A. Jordan,et al.  Prediction and Characterization of Multiple Extremal Paths in Continuously Monitored Qubits , 2016, 1612.07861.

[23]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[24]  Howard Mark Wiseman,et al.  Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements , 2011 .

[25]  H. Carmichael An open systems approach to quantum optics , 1993 .

[26]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[27]  H. M. Wiseman,et al.  Feedback-stabilization of an arbitrary pure state of a two-level atom , 2001 .

[28]  E. Lucero,et al.  Reversal of the weak measurement of a quantum state in a superconducting phase qubit. , 2008, Physical review letters.

[29]  Kurt Jacobs How to project qubits faster using quantum feedback , 2003 .

[30]  A. Jordan,et al.  Mapping the optimal route between two quantum states , 2014, Nature.

[31]  Mazyar Mirrahimi,et al.  Persistent control of a superconducting qubit by stroboscopic measurement feedback , 2012, 1301.6095.

[32]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[33]  P. Rouchon,et al.  Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission , 2015, 1511.06677.

[34]  Alexander N. Korotkov,et al.  Quantum feedback control of a solid-state qubit , 2002 .

[35]  A. Jordan,et al.  Continuous quantum measurement with independent detector cross correlations. , 2005, Physical review letters.

[36]  L. Tornberg,et al.  Reversing Quantum Trajectories with Analog Feedback , 2013, 1311.5472.

[37]  Kurt Jacobs,et al.  Rapid measurement of quantum systems using feedback control. , 2007, Physical review letters.

[38]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[39]  Alexandre Blais,et al.  Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect , 2007, 0709.4264.

[40]  H. M. Wiseman,et al.  Reconsidering rapid qubit purification by feedback , 2006, quant-ph/0603062.

[41]  K. Mølmer,et al.  Qubit state monitoring by measurement of three complementary observables. , 2010, Physical review letters.

[42]  A. Jordan,et al.  Quantum caustics in resonance fluorescence trajectories , 2016, 1612.03189.

[43]  K. Jacobs,et al.  Rapid state-reduction of quantum systems using feedback control , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[44]  A. Jordan,et al.  Undoing a weak quantum measurement of a solid-state qubit. , 2006, Physical review letters.

[45]  J. Dressel,et al.  Probing quantumness with joint continuous measurements of non-commuting qubit observables , 2016, 1606.07934.

[46]  G. J. Milburn,et al.  Dynamical creation of entanglement by homodyne-mediated feedback (9 pages) , 2004, quant-ph/0409154.

[47]  A. Jordan,et al.  Quantum trajectories and their statistics for remotely entangled quantum bits , 2016, 1603.09623.

[48]  Action principle for continuous quantum measurement , 2013, 1305.5201.

[49]  R. J. Schoelkopf,et al.  Confining the state of light to a quantum manifold by engineered two-photon loss , 2014, Science.

[50]  Alexander N. Korotkov Quantum Bayesian approach to circuit QED measurement with moderate bandwidth , 2016 .

[51]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[52]  Alexander N. Korotkov Simple quantum feedback of a solid-state qubit , 2005 .

[53]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[54]  P. Rouchon,et al.  Observing quantum state diffusion by heterodyne detection of fluorescence , 2015, 1511.01415.

[55]  Correlators in simultaneous measurement of non-commuting qubit observables , 2017, npj Quantum Information.

[56]  Holger F. Hofmann,et al.  Quantum control of atomic systems by homodyne detection and feedback , 1998 .

[57]  L. Frunzio,et al.  Autonomously stabilized entanglement between two superconducting quantum bits , 2013, Nature.

[58]  S. Hacohen-Gourgy Dynamics of simultaneously measured non-commuting observables , 2017 .

[59]  S. Girvin,et al.  Cavity-assisted quantum bath engineering. , 2012, Physical review letters.

[60]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.

[61]  A. Jordan,et al.  Stochastic path-integral formalism for continuous quantum measurement , 2015, 1507.07016.