Quantum algorithms revisited

Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. A common pattern underpinning quantum algorithms can be identified when quantum computation is viewed as multiparticle interference. We use this approach to review (and improve) some of the existing quantum algorithms and to show how they are related to different instances of quantum phase estimation. We provide an explicit algorithm for generating any prescribed interference pattern with an arbitrary precision.

[1]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  David Chaum,et al.  Advances in Cryptology: Proceedings Of Crypto 83 , 2012 .

[3]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[5]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[6]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[8]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[9]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[10]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[11]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[12]  C. Moler,et al.  Advances in Cryptology , 2000, Lecture Notes in Computer Science.