Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

Abstract Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. We demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.

[1]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[3]  Jorge Kohanoff,et al.  Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods , 2006 .

[4]  D. R. Luke,et al.  Robust mixing for ab initio quantum mechanical calculations , 2008, 0801.3098.

[5]  Andrew Canning,et al.  Thomas-Fermi charge mixing for obtaining self-consistency in density functional calculations , 2001 .

[6]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[7]  A. Zunger,et al.  New approach for solving the density-functional self-consistent-field problem , 1982 .

[8]  P. Pulay Improved SCF convergence acceleration , 1982 .

[9]  T. Porsching,et al.  Numerical Analysis of Partial Differential Equations , 1990 .

[10]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[11]  Gustavo E. Scuseria,et al.  Converging self-consistent field equations in quantum chemistry – recent achievements and remaining challenges , 2007 .

[12]  Phanish Suryanarayana,et al.  Restarted Pulay mixing for efficient and robust acceleration of fixed-point iterations , 2015 .

[13]  G. P. Srivastava CORRIGENDUM: Broyden's method for self-consistent field convergence acceleration , 1984 .

[14]  John D. Joannopoulos,et al.  Dielectric matrix scheme for fast convergence in self-consistent electronic-structure calculations , 1982 .

[15]  E. Cancès,et al.  On the convergence of SCF algorithms for the Hartree-Fock equations , 2000 .

[16]  Phanish Suryanarayana,et al.  Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems , 2016, J. Comput. Phys..

[17]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[18]  Xavier Gonze,et al.  Preconditioning of self-consistent-field cycles in density-functional theory: The extrapolar method , 2008 .

[19]  Richard D. James,et al.  A spectral scheme for Kohn-Sham density functional theory of clusters , 2014, J. Comput. Phys..

[20]  Claude Brezinski,et al.  Numerical Methods for Engineers and Scientists , 1992 .

[21]  G. Kerker Efficient iteration scheme for self-consistent pseudopotential calculations , 1981 .

[22]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[23]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[24]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[25]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[26]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[27]  David R. Bowler,et al.  An efficient and robust technique for achieving self consistency in electronic structure calculations , 2000 .

[28]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[29]  C. T. Kelley,et al.  Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..

[30]  C. Bris,et al.  Can we outperform the DIIS approach for electronic structure calculations , 2000 .

[31]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[32]  Reinhold Schneider,et al.  An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .

[33]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[34]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[35]  Steven G. Louie,et al.  Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method , 1984 .

[36]  Chao Yang,et al.  Elliptic Preconditioner for Accelerating the Self-Consistent Field Iteration in Kohn-Sham Density Functional Theory , 2012, SIAM J. Sci. Comput..

[37]  V. Eyert A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences , 1996 .

[38]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .