Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions

This article focuses on the construction, directly in physical space, of simply parametrized covariance functions for data‐assimilation applications. A self‐contained, rigorous mathematical summary of relevant topics from correlation theory is provided as a foundation for this construction. Covariance and correlation functions are defined, and common notions of homogeneity and isotropy are clarified. Classical results are stated, and proven where instructive. Included are smoothness properties relevant to multivariate statistical‐analysis algorithms where wind/wind and wind/mass correlation models are obtained by differentiating the correlation model of a mass variable. the Convolution Theorem is introduced as the primary tool used to construct classes of covariance and cross‐covariance functions on three‐dimensional Euclidean space R3. Among these are classes of compactly supported functions that restrict to covariance and cross‐covariance functions on the unit sphere S2, and that vanish identically on subsets of positive measure on S2. It is shown that these covariance and cross‐covariance functions on S2, referred to as being space‐limited, cannot be obtained using truncated spectral expansions. Compactly supported and space‐limited covariance functions determine sparse covariance matrices when evaluated on a grid, thereby easing computational burdens in atmospheric data‐analysis algorithms.

[1]  S. Bochner,et al.  A theorem on Fourier-Stieltjes integrals , 1934 .

[2]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[3]  John Cunningham,et al.  An Introduction to Applied Mathematics , 1952 .

[4]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[5]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[6]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[7]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[8]  J. Thorpe Elementary Topics in Differential Geometry , 1979 .

[9]  J. Weidmann Linear Operators in Hilbert Spaces , 1980 .

[10]  M. Ghil,et al.  A stochastic-dynamic model for the spatial structure of forecast error statistics , 1983 .

[11]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[12]  A. Balakrishnan,et al.  Spectral theory of random fields , 1983 .

[13]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[14]  Phil Diamond,et al.  Testing variograms for positive-definiteness , 1984 .

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[17]  A. Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data Part II: The covariance of height and wind errors , 1986 .

[18]  Anthony Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .

[19]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[20]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[21]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[22]  H. J. Thiébaux Spatial Objective Analysis , 1989 .

[23]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[24]  G. Wahba Spline models for observational data , 1990 .

[25]  Eric C. Hackert,et al.  Data Assimilation Applied to the Temperature and Circulation in the Tropical Atlantic, 1983–84 , 1990 .

[26]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[27]  R. Daley Atmospheric Data Analysis , 1991 .

[28]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[29]  G. Folland Fourier analysis and its applications , 1992 .

[30]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[31]  H. Mitchell,et al.  A continuous three‐dimensional model of short‐range forecast error covariances , 1992 .

[32]  Peter Talkner,et al.  Some remarks on spatial correlation function models , 1993 .

[33]  L. Borgman,et al.  Estimation of a multidimensional covariance function in case of anisotropy , 1994 .

[34]  Dean S. Oliver,et al.  Moving averages for Gaussian simulation in two and three dimensions , 1995 .

[35]  Michael Seablom,et al.  Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1 , 1995 .

[36]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[37]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[38]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .

[39]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[40]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .