Defence reactions of developing somatic embryos of Algerian fir (Abies numidica)

Summary Defence reactions of embryonal suspensor mass (ESM), precotyledonary, cotyledonary and desiccated cotyledonary somatic embryos of Abies numidica were tested by dual cultures with Phaeolus schweinitzii. Defence reactions were expressed at a very early stage of somatic embryo development. Both ESM and early somatic embryos inhibited mycelial growth, but the strongest defence was shown by the precotyledonary somatic embryos. The cotyledonary and desiccated cotyledonary embryos also showed defence reactions but with less intensity. Eight major components of soluble proteins, already present in the ESM, increased in concentration during subsequent developmental stages. Synthesis of two low-molecular components of 6 and 3 kDa appeared in desiccated embryos. Probable regulation of defence reactions by auxins in early somatic embryos, as well as by abscisic acid content and storage proteins in subsequent developmental stages, is discussed. Resume Les reactions defensives d’Abies numidica ont ete testees au niveau du ESM, des embryons precotyledones et cotyledones tandi qu'apres leur deshydratation, en utilisant le procede de la culture doublee a l'aide de Phaeolus schweinitzii. Il semble que les reactions defensives sont produites au stade du developement bien precoces. Non-seulement ESM mais aussi les ebmryons somatiques precoces individuels ont inhibe la croissance du mycelium. Les embryons somatiques precotyledones ont montre une reaction defensive la plus forte, alors que les embryons cotyledones et deshydrates ont montre une defence moin intensive. Huit elements dominants des proteines solubles ont ete determines dans ESM. Leurs concetrations ont monte en cours des successives stades du development. La synthese des composants de bas poids moleculaire (6 et 3 kDa) apparu chez les embryons deshydrates. Une regulation des reactions defensives par les auxines chez les stades precoces meme par la tenneur de l'acide abscissique, les proteines de reserve chez les stades suivants est discute. Zusammenfassung Abwehrreaktionen im embryonalen Suspensorgewebe (ESM), in somatischen Embryonen im Keimblatt-Vorstadium, im Keimblattstadium und auch in dehydrierten somatischen Embryonen wurden in Dualkulturen mit dem Testpilz Phaeolus schweinitzii untersucht. Bereits in sehr fruhen Entwicklungsstadien wurden Abwehrreaktionen nachgewiesen. Das ESM und auch die fruhen somatischen Embryonen hemmten das Mycelwachstum, aber die starkste Abwehrreaktion zeigten die somatischen Embryonen im Keimblatt-Vorstadium. Die somatischen Embryonen im Keimblattstadium und die dehydrierten somatischen Embryonen zeigten Abwehrreaktionen von geringerer Intensitat. Im ESM wurden 8 losliche Proteinkomponenten nachgewiesen, deren Konzentration in den weiteren Entwicklungsstadien zunahm. In den dehydrierten somatischen Embryonen wurden niedermolekulare Komponenten mit 6 und 3 kDa gebildet. Die mogliche Regulation der Abwehrreaktionen in den fruhen somatischen Embryonen durch Auxine und in den spateren Entwicklungsstadien durch Abscisinsaure und Speicherproteine wird diskutiert.

[1]  A. Kormuťák,et al.  Some features of somatic embryo maturation of algerian fir , 2002, In Vitro Cellular & Developmental Biology - Plant.

[2]  J. Salaj,et al.  Somatic Embryo Formation on Mature Abies alba × Abies cephalonica Zygotic Embryo Explants , 2003, Biologia Plantarum.

[3]  J. Salaj,et al.  Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba x Abies cephalonica, and Abies alba x Abies numidica) , 1996, Plant Cell Reports.

[4]  Els J. M. Van Damme,et al.  The role of lectins in plant defence , 1995, The Histochemical Journal.

[5]  G. Daniel,et al.  Isolation and immunolocalization of a Pinus nigra lectin (PNL) during interaction with the necrotrophs—Heterobasidion annosum and Fusarium avenaceum , 2001 .

[6]  A. Pappinen,et al.  Growth reactions of a Gremmeniella abietina isolate and Scots pine embryogenic tissue cultures differ in a host-parasite in vitro system. , 2000 .

[7]  B. Vooková,et al.  In vitro growth response of wood‐rotting fungi to IAA , 1999 .

[8]  H. Häggman,et al.  Interaction between embryogenic cultures of Scots pine and ectomycorrhizal fungi , 1998, Mycorrhiza.

[9]  P. Krogstrup,et al.  Somatic Embryogenesis in Abies spp. , 1995 .

[10]  S. Misra Conifer zygotic embryogenesis, somatic embryogenesis, and seed germination: Biochemical and molecular advances , 1994, Seed Science Research.

[11]  B. Vooková,et al.  Effect of auxin, cytokinin, and glutamine on mycelial growth of Phaeolus schweinitzii , 1993 .

[12]  B. Rittich,et al.  Abscisic acid content and defense reactions in callus cultures of poplar , 1992 .

[13]  P. Engström,et al.  Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce) , 1990 .

[14]  D. Bowles,et al.  Defense-related proteins in higher plants. , 1990, Annual review of biochemistry.

[15]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[16]  R. U. Schenk,et al.  Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures , 1972 .

[17]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[18]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .