Algorithm 717: Subroutines for maximum likelihood and quasi-likelihood estimation of parameters in nonlinear regression models
暂无分享,去创建一个
[1] P. Holland,et al. Robust regression using iteratively reweighted least-squares , 1977 .
[2] Jorge J. Moré,et al. The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .
[3] David S. Bunch. Maximum likelihood estimation of probabilistic choice methods , 1987 .
[4] J. Nelder,et al. An extended quasi-likelihood function , 1987 .
[5] A. Fielding. Sensitivity Analysis in Linear Regression , 1990 .
[6] R. Carroll,et al. Variance Function Estimation , 1987 .
[7] Roy E. Welsch,et al. Maximum Likelihood and Quasi-Likelihood for Nonlinear Exponential Family Regression Models , 1988 .
[8] David M. author-Gay. Computing Optimal Locally Constrained Steps , 1981 .
[9] H. Walker,et al. Convergence Theorems for Least-Change Secant Update Methods, , 1981 .
[10] Homer F. Walker,et al. Erratum: Convergence Theorems for Least-Change Secant Update Methods , 1982 .
[11] David S. Bunch,et al. A comparison of algorithms for maximum likelihood estimation of choice models , 1988 .
[12] R. F. Ling. Residuals and Influence in Regression , 1984 .
[13] John E. Dennis,et al. Algorithm 573: NL2SOL—An Adaptive Nonlinear Least-Squares Algorithm [E4] , 1981, TOMS.
[14] D. Ruppert,et al. Transformation and Weighting in Regression , 1988 .
[15] Åke Björck,et al. Stability analysis of the method of seminormal equations for linear least squares problems , 1987 .
[16] R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .
[17] S. Weisberg,et al. Residuals and Influence in Regression , 1982 .
[18] John E. Dennis,et al. An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.
[19] Jorge J. Moré,et al. Computing a Trust Region Step , 1983 .
[20] David M. Gay,et al. Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983, TOMS.
[21] A. D. Hall,et al. The PORT Mathematical Subroutine Library , 1978, TOMS.
[22] Carlos F. Daganzo,et al. Multinomial Probit: The Theory and its Application to Demand Forecasting. , 1980 .