Algorithm 717: Subroutines for maximum likelihood and quasi-likelihood estimation of parameters in nonlinear regression models

We present FORTRAN 77 subroutines that solve statistical parameter estimation problems for general nonlinear models, e.g., nonlinear least-squares, maximum likelihood, maximum quasi-likelihood, generalized nonlinear least-squares, and some robust fitting problems. The accompanying test examples include members of the generalized linear model family, extensions using nonlinear predictors (“nonlinear GLIM”), and probabilistic choice models, such as linear-in-parameter multinomial probit models. The basic method, a generalization of the NL2SOL algorithm for nonlinear least-squares, employs a model/trust-region scheme for computing trial steps, exploits special structure by maintaining a secant approximation to the second-order part of the Hessian, and adaptively switches between a Gauss-Newton and an augmented Hessian approximation. Gauss-Newton steps are computed using a corrected seminormal equations approach. The subroutines include variants that handle simple bounds on the parameters, and that compute approximate regression diagnostics.

[1]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[2]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[3]  David S. Bunch Maximum likelihood estimation of probabilistic choice methods , 1987 .

[4]  J. Nelder,et al.  An extended quasi-likelihood function , 1987 .

[5]  A. Fielding Sensitivity Analysis in Linear Regression , 1990 .

[6]  R. Carroll,et al.  Variance Function Estimation , 1987 .

[7]  Roy E. Welsch,et al.  Maximum Likelihood and Quasi-Likelihood for Nonlinear Exponential Family Regression Models , 1988 .

[8]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[9]  H. Walker,et al.  Convergence Theorems for Least-Change Secant Update Methods, , 1981 .

[10]  Homer F. Walker,et al.  Erratum: Convergence Theorems for Least-Change Secant Update Methods , 1982 .

[11]  David S. Bunch,et al.  A comparison of algorithms for maximum likelihood estimation of choice models , 1988 .

[12]  R. F. Ling Residuals and Influence in Regression , 1984 .

[13]  John E. Dennis,et al.  Algorithm 573: NL2SOL—An Adaptive Nonlinear Least-Squares Algorithm [E4] , 1981, TOMS.

[14]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[15]  Åke Björck,et al.  Stability analysis of the method of seminormal equations for linear least squares problems , 1987 .

[16]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[17]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[18]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[19]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[20]  David M. Gay,et al.  Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983, TOMS.

[21]  A. D. Hall,et al.  The PORT Mathematical Subroutine Library , 1978, TOMS.

[22]  Carlos F. Daganzo,et al.  Multinomial Probit: The Theory and its Application to Demand Forecasting. , 1980 .