Germline AGO2 mutations impair RNA interference and human neurological development

[1]  F. Kortüm,et al.  Truncating mutations in SHANK3 associated with global developmental delay interfere with nuclear β‐catenin signaling , 2020, Journal of neurochemistry.

[2]  T. Meitinger,et al.  Exome Sequencing in Children. , 2019, Deutsches Arzteblatt international.

[3]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[4]  K. M. McSweeney,et al.  Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann–Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations , 2018, Human Genetics.

[5]  G. Meister,et al.  Regulation of microRNA biogenesis and its crosstalk with other cellular pathways , 2018, Nature Reviews Molecular Cell Biology.

[6]  H. Stefánsson,et al.  MAP1B mutations cause intellectual disability and extensive white matter deficit , 2018, Nature Communications.

[7]  Joseph P. McCleery,et al.  Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement , 2018, Nature Reviews Genetics.

[8]  K. Boycott,et al.  Diagnostic clarity of exome sequencing following negative comprehensive panel testing in the neonatal intensive care unit , 2018, American journal of medical genetics. Part A.

[9]  L. A. Lowery,et al.  The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders , 2018, Front. Cell. Neurosci..

[10]  Chirlmin Joo,et al.  Helix‐7 in Argonaute2 shapes the microRNA seed region for rapid target recognition , 2018, The EMBO journal.

[11]  Vinodh Narayanan,et al.  De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder. , 2018, American journal of human genetics.

[12]  J. Rosenfeld,et al.  De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder. , 2017, American journal of human genetics.

[13]  Shan Chang,et al.  Exploring the RNA‐bound and RNA‐free human Argonaute‐2 by molecular dynamics simulation method , 2017, Chemical biology & drug design.

[14]  G. Schratt,et al.  MicroRNAs in neural development: from master regulators to fine-tuners , 2017, Development.

[15]  Julia C. Engelmann,et al.  Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA‐guided gene silencing in vivo , 2017, The EMBO journal.

[16]  Tuo Li,et al.  An Argonaute phosphorylation cycle promotes microRNA-mediated silencing , 2016, Nature.

[17]  W. Chung,et al.  Clinical application of whole-exome sequencing across clinical indications , 2015, Genetics in Medicine.

[18]  Michele Parrinello,et al.  Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint. , 2016, Annual review of physical chemistry.

[19]  J. Whitelegge,et al.  The X-Linked-Intellectual-Disability-Associated Ubiquitin Ligase Mid2 Interacts with Astrin and Regulates Astrin Levels to Promote Cell Division. , 2016, Cell reports.

[20]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[21]  G. Shan,et al.  RNAi pathway participates in chromosome segregation in mammalian cells , 2015, Cell Discovery.

[22]  Hairui Xi,et al.  Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects , 2015, Nature Communications.

[23]  K. Gunsalus,et al.  Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition , 2015, Nucleic acids research.

[24]  R. Pfundt,et al.  De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment. , 2015, American journal of human genetics.

[25]  G. Schratt,et al.  A large‐scale functional screen identifies Nova1 and Ncoa3 as regulators of neuronal miRNA function , 2015, The EMBO journal.

[26]  Michal Otyepka,et al.  Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics. , 2015, Journal of chemical theory and computation.

[27]  D. Valle,et al.  New Tools for Mendelian Disease Gene Identification: PhenoDB Variant Analysis Module; and GeneMatcher, a Web‐Based Tool for Linking Investigators with an Interest in the Same Gene , 2015, Human mutation.

[28]  I. MacRae,et al.  Gene regulation. Structural basis for microRNA targeting. , 2014 .

[29]  I. MacRae,et al.  Structural basis for microRNA targeting , 2014, Science.

[30]  A. Battaglia,et al.  Five children with deletions of 1p34.3 encompassing AGO1 and AGO3 , 2014, European Journal of Human Genetics.

[31]  Ying Liu,et al.  Evol and ProDy for bridging protein sequence evolution and structural dynamics , 2014, Bioinform..

[32]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[33]  Christian Gilissen,et al.  A Post‐Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases , 2013, Human mutation.

[34]  Ji-Joon Song,et al.  Dynamic anchoring of the 3'-end of the guide strand controls the target dissociation of Argonaute-guide complex. , 2013, Journal of the American Chemical Society.

[35]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[36]  Giacomo Fiorin,et al.  Using collective variables to drive molecular dynamics simulations , 2013 .

[37]  G. Meister,et al.  Turning catalytically inactive human Argonaute proteins into active slicer enzymes , 2013, Nature Structural &Molecular Biology.

[38]  A. Orth,et al.  Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. , 2013, Molecules and Cells.

[39]  Y. Goo,et al.  Activity-dependent synaptic localization of processing bodies and their role in dendritic structural plasticity , 2013, Journal of Cell Science.

[40]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[41]  Yong Huang,et al.  Slicing-Independent RISC Activation Requires the Argonaute PAZ Domain , 2012, Current Biology.

[42]  I. MacRae,et al.  The Crystal Structure of Human Argonaute2 , 2012, Science.

[43]  Y. Tomari,et al.  The N domain of Argonaute drives duplex unwinding during RISC assembly , 2012, Nature Structural &Molecular Biology.

[44]  Steffen Schmidt,et al.  Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein , 2011, Proceedings of the National Academy of Sciences.

[45]  G. Schratt microRNAs at the synapse , 2009, Nature Reviews Neuroscience.

[46]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[47]  W. Filipowicz,et al.  Dendrites of Mammalian Neurons Contain Specialized P-Body-Like Structures That Respond to Neuronal Activation , 2008, The Journal of Neuroscience.

[48]  M. Kiebler,et al.  Dynamic Interaction between P-Bodies and Transport Ribonucleoprotein Particles in Dendrites of Mature Hippocampal Neurons , 2008, The Journal of Neuroscience.

[49]  Ligang Wu,et al.  Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. , 2008, Molecular cell.

[50]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[51]  Anthony K. L. Leung,et al.  Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules , 2006, Proceedings of the National Academy of Sciences.

[52]  T. Tuschl,et al.  Identification of Novel Argonaute-Associated Proteins , 2005, Current Biology.

[53]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[54]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[55]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[56]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[57]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[58]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[59]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[60]  D. Patel,et al.  Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain , 2004, Nature.

[61]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[62]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[63]  G. Kops,et al.  Kinetochore Malfunction in Human Pathologies. , 2017, Advances in experimental medicine and biology.