Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy

Aberration-corrected transmission electron microscopy allows us to image the structure of matter at genuine atomic resolution. A prominent role for the imaging of crystalline samples is played by the negative spherical aberration imaging (NCSI) technique. The physical background of this technique is reviewed. The especially high contrast observed under these conditions owes its origin to an enhancing combination of amplitude contrast due to electron diffraction channelling and phase contrast. A number of examples of the application of NCSI are reviewed in order to illustrate the applicability and the state-of-the-art of this technique.

[1]  C. Jia,et al.  Chapter 11 Atomic-Resolution Aberration-Corrected Transmission Electron Microscopy , 2008 .

[2]  J. Barthel,et al.  Quantification of the information limit of transmission electron microscopes. , 2008, Physical review letters.

[3]  C. Jia,et al.  Atomic structure of the interface between SrTiO3 thin films and Si(001) substrates , 2008 .

[4]  K. Urban,et al.  Studying Atomic Structures by Aberration-Corrected Transmission Electron Microscopy , 2008, Science.

[5]  Sumio Iijima,et al.  High resolution electron microscopy , 2008 .

[6]  Marin Alexe,et al.  Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. , 2008, Nature materials.

[7]  L. Houben,et al.  Imaging Light Atoms at Sub-Ångström Resolution in an Image Side CS-Corrected Electron Microscope FEI Titan 80-300 , 2007 .

[8]  T. Ohta,et al.  Biochemical, Molecular Genetic, and Structural Analyses of the Staphylococcal Nucleoid , 2007, Microscopy and Microanalysis.

[9]  M. Lentzen Contrast Transfer and Resolution Limits for Sub-Angstrom High-Resolution Transmission Electron Microscopy , 2006, Microscopy and Microanalysis.

[10]  M. Lentzen Progress in Aberration-Corrected High-Resolution Transmission Electron Microscopy Using Hardware Aberration Correction , 2006, Microscopy and Microanalysis.

[11]  L. Houben,et al.  Atomic-precision determination of the reconstruction of a 90 degree tilt boundary in YBa2Cu3O7-delta by aberration corrected HRTEM. , 2006, Ultramicroscopy.

[12]  D. Van Dyck,et al.  Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part I: a theoretical framework. , 2005 .

[13]  A. J. den Dekker,et al.  Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part II: a practical example. , 2005, Ultramicroscopy.

[14]  M. Lentzen The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. , 2004, Ultramicroscopy.

[15]  C. Jia,et al.  Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials , 2004, Science.

[16]  C. Jia,et al.  High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration , 2004, Microscopy and Microanalysis.

[17]  K. Urban,et al.  Spherical Aberration Correction in Tandem with Exit-Plane Wave Function Reconstruction: Interlocking Tools for the Atomic Scale Imaging of Lattice Defects in GaAs , 2004, Microscopy and Microanalysis.

[18]  Chun-Lin Jia,et al.  Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics. , 2003 .

[19]  J. Spence High-Resolution Electron Microscopy , 2003 .

[20]  C. Jia,et al.  High-resolution imaging with an aberration-corrected transmission electron microscope. , 2002, Ultramicroscopy.

[21]  A. Demkov,et al.  Atomic and electronic structure of the Si/SrTiO3 interface , 2003 .

[22]  R Kilaas,et al.  Imaging columns of the light elements carbon, nitrogen and oxygen with sub Angstrom resolution. , 2001, Ultramicroscopy.

[23]  W. O. Saxton,et al.  A new way of measuring microscope aberrations , 2000, Ultramicroscopy.

[24]  C. Jia,et al.  INVESTIGATION OF ATOMIC DISPLACEMENTS AT A SIGMA 3 (111) TWIN BOUNDARY IN BATIO3 BY MEANS OF PHASE-RETRIEVAL ELECTRON MICROSCOPY , 1999 .

[25]  D. Van dyck,et al.  How to optimize the design of a quantitative HREM experiment so as to attain the highest precision , 1999, Journal of microscopy.

[26]  Maximilian Haider,et al.  Residual wave aberrations in the first spherical aberration corrected transmission electron microscope , 1998 .

[27]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[28]  D. Van Dyck,et al.  A simple intuitive theory for electron diffraction , 1996 .

[29]  H. Lichte,et al.  High-resolution electron holography of non-periodic structures at the example of a Σ = 13 grain boundary in gold , 1996 .

[30]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[31]  D. Vanderbilt,et al.  Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.

[32]  Janssen,et al.  Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. , 1992, Physical review letters.

[33]  Hannes Lichte,et al.  Optimum focus for taking electron holograms , 1991 .

[34]  Pierre Stadelmann,et al.  EMS-A software package for electron diffraction analysis and HREM image simulation in materials science , 1987 .

[35]  N. Yoshida,et al.  The effect of electron diffraction channelling on the displacement of atoms in electron-irradiated crystals , 1979 .

[36]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[37]  A. Howie,et al.  Diffraction channelling of fast electrons and positrons in crystals , 1966 .

[38]  O. Scherzer The Theoretical Resolution Limit of the Electron Microscope , 1949 .

[39]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .